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CHAPTER 9.  RELATIONS 
 
 Recall that a function f from the domain D to the codomain C associates to each element 
x∈D exactly one element y = f(x)∈C.  If instead we allow each element x∈D to be associated to 
any number of elements in C, then we have a generalization of a function called a relation, as 
illustrated by the diagram below. 
 
                                   a b c 
 
        1                a         1 1 0   
  
        2                b         0 1 1 
 
        3                c         0 0 1 
 
        4                          0 0 0
 
 
        D        R       C          MR 
 
 Each arrow in the above diagram represents an ordered pair (x,y), where x∈D and y∈C.  
The set of all the ordered pairs (x,y) such that x∈D and y∈C is the cartesian product D×C.  In a 
relation, each of the ordered pairs (x,y) in D×C can be present or absent; so a relation R from the 
domain D to the codomain C is a subset of D×C.  Recall that in Chapter 3 we defined what a 
function does.  We can now define what a function is: a function f from the domain D to the 
codomain C is a relation from D to C such that for each x in D there is exactly one ordered pair 
(x,y) in f. 
 
 If D and C are finite, then a relation R from D to C can be represented by a graph or by a 
matrix MR, which has one row for every element of D and one column for every element of C. 
The element MR[x,y] is equal to 1 if (x,y)∈R or 0 otherwise, as illustrated above. 
 
 
9.1 Operations on relations 
 
 Since a relation is a set, the usual set operations can be done on them.  If R and S have the 
same domain D and codomain C, then so do the relations R∪S , R∩S , R⊕ S , R− S and R .  
The matrix of each of these relations can be found from MR and MS  in the obvious way.  For 
instance, for every x∈D and every y∈C, MR∩S[x,y]=1 if MR[x,y]=1 and MS[x,y]=1; otherwise 
MR∩S[x,y]=0.  I leave it to you to find a formula for each of the matrices of the other relations 
obtained by applying set operations to R and S and to verify your formulae (and the one given 
here for set intersection) on some examples. 
 
 Recall that the inverse of a bijective function f :D→C is a function f −1 :C → D  defined 
by saying that for every y in C, f −1(y) is equal to the unique x in D such that f(x) = y.  That is, if f
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sends x into y, then f −1 sends y into x.  The inverse of a relation can be defined similarly except 
that no restriction has to be made on the sort of relation that can have an inverse.  The inverse of 
a relation R : D→C is the relation R−1 :C → D  such that for every y∈C and every x∈D, 
(y,x)∈ R−1 if and only if (x,y)∈R.  It will sometimes be convenient to write xRy instead of 
(x,y)∈R.  In this notation, yR−1x if and only if xRy.  The diagram below shows the inverse of the 
relation shown in the diagram above and the matrix of this inverse relation.
 
 
   
       a                  1               a | 1 0 0 0 
 
       b                  2               b | 1 1 0 0 
 
       c                  3               c | 0 1 1 0 
 
                               4 

 
    C        R−1      D                                       MR−1=(MR )T  
 
 The matrix of R−1 is not the inverse of MR.  It is the transpose of M R, obtained from 
MR by exchanging the rows and columns, because a row of MR represents an element x∈D, a 
column of MR represents an element y∈C, and R−1 is obtained from R by exchanging x and y. 
 
 Recall that the composition of the function g:A→B by the function f :B→C is the 
function f  og:A→C defined by the proposition that for every element x in A, if g(x) = y and 
f(y) = z, then (f  og)(x) = z.  That is, if g sends x into y and f sends y into z, then f  og sends x into z.  
The composition of a relation S by a relation R can be defined similarly except that in general 
there is no guarantee that S is going to send x into anything; so we instead insist that there be at 
least one y in B such that S sends x into y and R sends y into z.  More formally, if S is a relation 
from A to B and R is a relation from B to C, then R  oS is the relation from A to C such that for 
every x∈A and every z∈C, xR  oSz if and only if there exists some y in B such that xSy and yRx. 
 
 The composition of one relation by another can be illustrated by the following model.  
Each of the sets A, B and C is represented by a set of rocks sticking up above the surface of a 
river.  A frog is sitting on one of the rocks x in A and a fly is sitting on one of the rocks z in C.  
The frog, of course, wants to eat the fly, but if it jumps into the river it will make noise, scaring 
the fly away; so it has to hop from its own rock x to the fly's rock z.  It can't hop from one rock to 
another in the same set or from any rock in A to any rock in C, but it can hop from rock x in A to 
rock y in B if xSy and it can hop from rock y in B to rock z in C if yRz.  Then xR  oSz if the frog 
can hop from x to z in two hops, the first one from x to some rock y in B and the second one from 
y to z.  Below we show two relations, the composition of one by the other and the matrices of all 
three relations. 
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     1 
   1      1      1   1 
     2 
   2          2 
     3 
   3      2      3   2 
     4 
 
 
 
                     A         S          B          R         C                                    A        R  oS          C 
 
        1 1 0 0      1 0                       1 0 
        0 0 1 0      1 0                       1 0 
        0 0 0 0      1 0                       0 0 
                     1 1 
 
 If the frog is on 1 and the fly is on 1, then there are 2 ways the frog can catch the fly: via 
the rock 1 in B and via the rock 2 in B.  If the fly is on 2, then the frog can't catch the fly because 
it can't hop to 2 in C from either of the rocks 1 and 2 in B it can hop to.  If the frog is on 2 and the 
fly is on 1, then there is 1 way the frog can catch the fly: via the rock 3 in B. If the fly is on 2, 
then the frog can't catch the fly because it can't hop to 2 in C from the one rock 3 in B it can hop 
to.  If the frog is on 3, then it can't catch the fly no matter which rock the fly is on, because the 
frog can't hop anywhere from where it is. 
 
 How could we evaluate   MRoS  from MR and MS  without drawing pictures?  Suppose the 
frog is on rock x in A and the fly is on rock z in C.  The frog can catch the fly if there is a rock y
in B such xSy and yRz.  Now xSy if MS[x,y] = 1 and yRz if MR[y,z] = 1; so rock y is useful for 
the frog if MS[x,y] = 1∧MR[y,z] = 1.  The frog can catch the fly if MS[x,y] = 1 ∧MR[y,z] = 1 
for at least one y in B – that is, if the disjunction over all y in B of the conjunctions 
MS[x,y] = 1 ∧MR[y,z] = 1 is equal to 1.  To calculate this disjunction, the algorithm given in 
some elementary texts runs all the way through row x of MS  and column z of MR, evaluating all 
the conjunctions and updating their disjunction.  This is what you do when you multiply two 
matrices, except that here you replace addition by disjunction and multiplication by conjunction.  
The essential difference is that here 1 + 1 = 1 instead of 2.  If you multiplied these two matrices 
the usual way, you would calculate the number of ways in which the frog could catch the fly, 
whereas with this sort of multiplication you are determining whether there is at least one way for 
the frog to catch the fly.  The product you get is called the Boolean product, denoted by 
MR ⊗MR . 
 
 But the average frog is smarter than such an algorithm.  If in the above example the frog 
is on rock 1 in A and the fly is on rock 1 in C, then after looking at rock 1 in B, the frog knows 
that it can catch the fly.  It isn't going to take the time to look at any of the other rocks in B to 
determine whether there is more than one way to catch the fly, because the fly may not stick 
around long enough.  As soon as the frog finds a way to get to the fly, it will hop to it.  A smart 
algorithm, or at least a smart algorithm designer, should be able to simulate the decision-making 
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capability of a smart frog and should set   MRoS[x,z ] equal to 1 as soon as a y is found such that 
MS[x,y] = 1 andMR[y,z] = 1.  Can you? 
 
9.2 Relations on a set and their properties 
 
 A relation R on a set S is a relation from S to S.  Since the domain and the codomain of R 
are the same, it isn't necessary to draw two copies of it.  The graph of R will have S as its set of 
vertices and there will be an arc (x,y) if and only if xRy.  Such a graph will be a directed graph in 
which loops are allowed but not multiple arcs; so it will be called a directed graph with no other 
adjectives in our notation.  The matrix of this graph is just MR (see the diagram below).  This 
method of representing a relation is more economical than drawing two copies of S, but to find 
R  oR it may be easier to draw 3 copies of S rather than look for paths of length 2 in the graph 
drawn with only one copy of S (try it both ways and decide for yourself). 
 
 
 
   1          2     1 1 1 1 
                    0 0 0 1 
                    0 0 0 0 
                    0 0 0 0  
 
   3          4 
 
 A relation R on a set S is called reflexive if xRx for every x in S and irreflexive if xRx for 
no x in S.  For example, on the set of real numbers, the relation ≥ is reflexive because x ≥ x for 
every real number x, the relation > is irreflexive because no number is greater than itself, and the 
relation y ≥ x2 is neither reflexive nor irreflexive because 1/2 ≥ (1/ 2)2 but 2 < 22. 
 
 In the diagrams below, the relation on the left is reflexive, the one on the right is 
irreflexive and the one in the middle is neither reflexive nor irreflexive. 
 
 
 
  

1 2   1  2   1    2 
 
  
 
 
   3      4  3  4   3    4 
 
 
 
     1 1 1 1               1 1 1 1                0 1 1 1 
     0 1 0 1               0 0 0 1                0 0 0 1 
     0 0 1 0               0 0 0 0                0 0 0 0 
     0 0 0 1               0 0 0 0                0 0 0 0 
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 From the graphs and the matrices above it is clear that a relation is reflexive if and only if 
the graph has a loop at every vertex and the matrix has a 1 in every place in the principal 
diagonal (the one from the top left corner to the bottom right corner) and a relation is irreflexive 
if and only if the graph has no loops and the matrix has a 0 in every place in the principal 
diagonal.  For the graph of a reflexive relation, the forbidden configuration is a a vertex without a 
loop (here a dashed line or curve indicates the absence of an arc)    o 
 
 
and for the graph of an irreflexive relation, the forbidden  configuration is a loop.  o   
 
 
 
 It takes O(n) operations to determine whether a relation R on a set S with n elements is 
reflexive or irreflexive or neither – you test the n elements on the principal diagonal of MR. 
 
 A relation R on a set S is called symmetric if for every x and y in S, xRy↔yRx.  For 
example, the relation that a line is parallel to another line is symmetric, and so is the relation that 
they are perpendicular.  A relation R on a set S is called asymmetric if xRy and yRx cannot both 
be true for any x and y in S.  For example, the relation > is asymmetric because there is no pair 
x,y such that x > y and y > x.  The relation ≥ is not asymmetric because x ≥ y and y ≥ x can both be 
true if x = y.  A relation R on a set S is called antisymmetric if xRy and yRx cannot both be true 
for any distinct x and y in S.  Another way of stating this condition is that if xRy and yRx, then 
x = y.  The relation ≥ is antisymmetric and so is the relation that x divides y on the set of positive 
integers because if x and y are positive integers and x divides y, then x ≤ y, but this relation is 
neither symmetric nor antisymmetric on the set of non-zero integers because 1 divides -1 and -1 
divides 1 but 1 and -1 are distinct.  The relation = is both symmetric and antisymmetric: if x = y, 
then y = x, and if x = y and y = x, then x = y.  Conversely, any relation that is both symmetric and 
antisymmetric is contained in the relation of equality: if xRy, then yRx by symmetry, so that x = y 
by antisymmetry.  The only relation on any set that is symmetric, antisymmetric and reflexive is 
the relation of equality: if xRy, then x = y by symmetry and antisymmetry, and if x = y, then xRy 
by reflexivity, so that xRy if and only if x = y. 
 
 In the diagrams below, the relation on the left is symmetric, the relation on the right is 
asymmetric and the relation in the middle is antisymmetric but not asymmetric. 
 
 
   1      2  1   2   1     2 
 
 
 
 
   3      4  3   4   3     4 
 
     0 1 1 0                0 1 0 0               0 1 0 0 
     1 1 0 1                0 1 0 1               0 0 0 1 
     1 0 0 0                1 0 0 0               1 0 0 0 
     0 1 0 0                0 0 0 0               0 0 0 0 
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 In the diagrams below, the relation on the left is neither symmetric nor anti-symmetric, 
the one on the right is symmetric and antisymmetric and reflexive and the one in the middle is 
symmetric and antisymmetric but not reflexive. 
 
 
 
   1      2  1   2    1    2 
 
 
  
 
   3      4  3   4    3    4 
 
 
     0 1 1 0                0 0 0 0              1 0 0 0 
     1 1 0 0                0 1 0 0              0 1 0 0 
     0 0 0 0                0 0 0 0              0 0 1 0 
     0 1 0 0                0 0 0 0              0 0 0 1 
 
 From the graphs and matrices above we can deduce the following tests for these 
properties.  A relation is symmetric if and only if for every non-loop arc (x,y) in the graph there is 
a return arc (y,x) and the matrix is symmetric: every element not on the principal diagonal sees an 
element equal to itself when it uses the principal diagonal as a mirror.  The forbidden 
configuration for a symmetric relation is an arc without a return arc:  
 

o                o . 
 
 The forbidden configuration for an antisymmetric relation is an arc with a return arc: 
 

o       o. 
 

A relation is asymmetric if and only if it is both antisymmetric and irreflexive; so it has 
two forbidden configurations: an arc with a return arc and a loop.  To test a relation on a set S 
with n elements for symmetry or antisymmetry you check the off-diagonal elements to see 
whether a 1 sees a 1 in the mirror (if so, no antisymmetry) or a 1 sees a 0 (if so, no symmetry) 
and to test for asymmetry you check the diagonal elements too; so these tests take O( n2) 
operations. 
 
 A relation R on a set S is called transitive if for all x, y and z in S, if xRy and yRz, then 
xRz.  An example of a transitive relation is >: if a cow is bigger than a dog and the dog is bigger 
than a mouse, then the cow is (much) bigger than the mouse.  It's funnier in French: si une vache 
est plus grande qu'un chien et le chien est plus grand qu'une souris, alors la vache est vachement 
plus grande que la souris.  Other transitive relations: one integer divides another, one set is a 
subset of another, one function is an estimate of another (you prove that one).  The relation that a 
line on a plane is perpendicular to another line on the same plane is not transitive: if line x is 
perpendicular to line y and line y is perpendicular to line z, then line x is parallel to line z. 
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 The relation drawn in the first diagram in this section is transitive and so are the three 
relations drawn just below it – the left one is the relation that one of the integers 1,2,3,4 divides 
another.  Of the three relations shown below, the left one and the middle one are not transitive but 
the right one is. 
 
 
   1      2  1  2   1    2 
 
 
 
 
   3      4  3  4   3    4 
 
 
     0 1 0 0                0 1 0 0               0 1 0 0 
     0 0 0 1                1 0 0 0               0 0 0 0 
     0 0 0 0                0 0 0 0               0 0 0 0 
     0 0 0 0                0 0 0 0               0 0 0 0 
 
 The first one isn't transitive because 1R2 and 2R4 but 1R4 is false.  The second one isn't 
transitive because 1R2 and 2R1 but 1R1 is false (also, 2R1 and 1R2 but 2R2 is false).  In the 
proposition that if xRy and yRz then xRz, set z = x; then it becomes the proposition that if xRy and 
yRx, then xRx.  For transitivity there are two forbidden configurations: two consecutive arcs 
without an arc from the initial vertex to the terminal one and an arc with a return arc but without 
a loop at both incident vertices. 
 
               o          o         o                         o               o 
 
 
 Note that setting y = x does not add any more configurations because if xRx and xRz then 
xRz for any relation, and the same holds true for setting y = z; so these are the only two forbidden 
configurations.  The relation on the right has neither of these two configurations; so it is 
transitive.  For all x, y, z, the proposition that xRy∧yRz is false; so the implication that 
(xRy∧ yRz )→ xRz  is true whether or not xRz is true. 
 
 How would you test a relation R for transitivity using the matrix MR?  You could, of 
course, test, for every triple (x,y,z), whether MR[x,y] = 1 and MR[y,z ] = 1 but MR[x,z ] = 0, 
but, like the smart frog, you want to stop once you know the answer.  Here is an algorithm that 
does so. 
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boolean function Transitive(n: natural; M: array[1..n][1..n]  of boolean) 

{boolean means true or false} 
{Transitive[n,M] = true if the relation whose matrix is M is transitive and false otherwise.} 

    local variables x, y, z: natural; 
    for x←1 to n do 
        for z←1 to n do 
            if M[x,z] = 0 then 
                for y←1 to n do 
                    if M[x,y]=1 and M[y,z]=1 then return false end if; 
                end for y; 
            end if; 
        end for z; 
    end for x; 
    return true; 
end transitive. 
 
 In the worst case this algorithm does O( n3) operations because there are 3 nested loops, 
each doing n iterations.  Is this a good estimate?  Suppose that M[x,z] = 0 for all x and z.  Then 
the inner loop will get iterated n3 times; so in this case the algorithm is neither better nor worse 
than testing every triple, but in any other case, some time will be saved. 
 
 If M[x,z] = 0, the inner loop calculates (M ⊗M )[x,z ] using the smart-frog approach and 
declares the relation not to be transitive if (M ⊗M )[x,z ] = 1; if this never happens, the algorithm 
declares the relation to be transitive.  Its correctness is based on the following theorem (you prove 
it). 
 

A relation R on a finite set S is transitive if and only if for each x and z in S, 
(MR ⊗MR )[x,z ] = 1→ MR[x,z ] = 1. 
 
9.3 Equivalence relations 
 
 A relation R on a set S is called an equivalence relation if it is reflexive, symmetric and 
transitive.  For each element x∈S, the set {y∈S: xRy} of elements y of S such that x is related to 
y is called the class of x under R and is denoted by [x]R , or just [x] if only one relation is being 
discussed. 
 
 Example 1.  The most obvious equivalence relation, and the one responsible for the name 
equivalence, is the relation of equality on any set.  For this relation, [x]={x} for any x. 
 
 Example 2.  The relation R on the set of real numbers defined by xRy iff either x = y or 
x = -y is an equivalence relation.  Since x = x for any x, R is reflexive.  If x = y, then y = x, and if 
x = -y, then y = -x; so R is symmeteric.  Suppose that xRy and yRz.  Then there are four 
possibilities.  If x = y and y = z, then x = z.  If x = y and y = -z, then x = -z.  If x = -y and y = z, then 
x = -z.  Finally, if x = -y and y = -z, then x = z.  In each of those cases xRz ; so R is transitive.  
Under this relation, [0] = {0} and [x] = [-x] = {x,-x} for every real number x ≠ 0. 
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 Example 3.  Let S be the set of lines on a plane and R be the relation on S defined by xRy 
if x is parallel to y – that is, x and y do not have a single point of intersection.  According to this 
definition, any line is parallel to itself; so R is reflexive.  The expression "x and y" is the same as 
"y and x"; so R is symmetric.  To prove that R is transitive, we use a theorem of Euclidean 
geometry that says that two lines are parallel if and only if they make the same angle with a 
transversal (another line parallel to neither of them).  From the diagram below the reader should 
be able to derive a proof of the transitivity of R. 
 
                  x                   y                    z 
  
 
                 θ                   θ                    θ 
 
 
 
 
 
 Under this relation, [x] is the set of lines that are parallel to x; by the above theorem, [x] is 
the set of lines making the same angle as x with a transversal. 
 
 Example 4.  Let R be the relation on any set S defined by xRy for all x and y in S.  This is 
(trivially) an equivalence relation and [x] = S for all x. 
 
 Example 5.  Let S be the set of integers and m an integer greater than 1, and let R be the 
relation on S defined by xRy if m divides x - y.  Since m divides x – x = 0, R is reflexive.  If m 
divides x - y, then m divides y - x = -(x-y); so R is symmetric.  If m divides both x - y and y - z, 
then m divides x - z = (x-y) + (y-z); so R is transitive.  Under this relation, [x] is the set of integers 
y such that m divides x - y so that y = x + km for some integer k.  For m = 5 we have the following 
equivalence classes: 
 
[0] = {…, -15, -10, -5, 0, 5, 10, 15, …} 
[1] = {…, -14, -9, -4, 1, 6, 11, 16, …} 
[2] = {…, -13, -8, -3, 2, 7, 12, 17, …} 
[3] = {…, -12, -7, -2, 3, 8, 13, 18, …} 
[4] = {…, -11, -6, -1, 4, 9, 14, 19, …}. 
 
 Note that [5] = [0], [6] = [1] and so on, so that the 5 classes [0],…,[4] cover S. 
 
 In each of those five examples, the equivalence classes are non-empty, they cover S (their 
union is equal to S) and any two distinct classes are disjoint.  Is this a coincidence or is this a 
property common to all equivalence relations? 
 
 Theorem.  Let R be an equivalence relation on any set S.  Then the equivalence 
classes  under R have the following properties: 

1) every equivalence class is non-empty; 
2) every element of S is in some equivalence class; 
3) any two distinct equivalence classes are disjoint, so that no element of S is in more than 

one equivalence class. 
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Proof. To prove properties 1 and 2, we use the fact that R is reflexive – that is, xRx for 
any x in S – so x∈[x].  It follows that [x] is not empty because it contains at least the element x 
(property 1) and that x belongs to at least the equivalence class [x] (property 2). 

 
To prove property 3 we use the fact that R is symmetric and transitive.  We prove the 

contrapositive of property 3: if [x] and [y] are not disjoint, then they are equal (as sets).  Suppose 
that [x] and [y] are not disjoint, so that there is an element z of S in both [x] and [y].  Then xRz 
and yRz.  To show that [x]⊆[y], we need to show that if u is any element of [x], then u∈[y] – that 
is, if xRu, then yRu.  In the leftmost diagram below, we show the facts we already know: xRz, yRz 
and xRu.  Since xRz and R is symmetric, zRx (see the second diagram below).  Since yRz and zRx 
and R is transitive, yRx (see the third diagram).  Finally, since yRx and xRu and R is transitive, 
yRu (see the last diagram). 
 
          z                                      z                                     z                                         z 
 
 
 
x                  y                  x                  y                 x                   y                    x                   y 
 
                     by symmetry               by transitivity                   by transitivity 
  
           u                                     u                                     u                                        u      

 
 

This proves that [x]⊆[y].  To prove that [x] = [y] we need to prove that [y]⊆[x].  To do 
this, we repeat the proof that [x]⊆[y], replacing each occurrence of x by y and each occurrence of 
y by x.  Once you do this, you will be entitled to write QED. 

 
Suppose we choose one representative of each family of identical equivalence classes.  

Then we have a set P of non-empty subsets of S that are pairwise disjoint and whose union 
covers S, so that each element of S belongs to exactly one member of P.  The set P is called a 
partition of S and the members of P are called the parts of S.  The above theorem says that the 
distinct representatives of the equivalences classes of an equivalence relation R on a set S 
constitute a partition of S. 

 
Conversely, suppose we have a partition P of a set S.  Since each element of S belongs to 

exactly one member of P, for each x in S we can define uniquely the part of S to which x belongs.  
Now let R be the relation on S defined by xRy if x belongs to the same part of S as y.  Since x 
belongs to the same part as x, R is reflexive.  If x belongs to the same part as y, then y belongs to 
the same part as x; so R is symmetric.  If x belongs to the same part as y and y belongs to the 
same part as z, then x belongs to the same part as z; so R is transitive.  Thus R is an equivalence 
relation, and for each x in S, [x] is the part of S to which x belongs.  We have just proved the 
converse of the previous theorem: a partition P of a set S defines an equivalence relation 
whose equivalence classes are the parts of S under the partition P. 

 
In the diagram below, S is an Easter egg that has been coloured by a child.  Each region of 

the egg has been coloured a different colour.  The regions are not empty, every bit of the surface 
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of the egg has been coloured, and no part has been coloured with more than one colour; so the 
regions constitute a partition of the surface of the egg.  By examining this egg and the location of 
x, y and z on its surface, you should be able to understand the above proof. 
 
 
 
 
 
 

 
                                                                                            x      y         z 
 
 
 
 
 
 
 The following theorem is related to the previous one and could be proved from it as a 
corollary. 
 
 Theorem.  Let R be a relation on a set S.  Suppose there is a function f from S to some set 
such that f(x) = f(y) if and only if xRy.  Then R is an equivalence relation. 
 
 Proof.  Since f(x) = f(x) for any x, R is reflexive.  If f(x) = f(y), then f(y) = f(x); so R is 
symmetric.  If f(x) = f(y) and f(y) = f(z), then f(x) = f(z); so R is transitive. 
 
 In example 1, f(x) = x for any x.  In example 2, f(x) could be |x| or x2.  In example 3, f(x) is 
the angle that the line x makes with a given line y (f(x) is defined to be 0 if x is parallel to or 
identical to y).  In example 4, f(x) has the same value for any x.  Finally, in example 5, 
f(x) = x mod m.  I leave you to prove that f(x) = f(y) if and only if xRy for the first four examples.  
Here is a proof for example 5.  By the formula for the quotient and remainder of a division, there 
are integers q and r such that x = qm + r and 0 ≤ r < m, and there are integers k and l such that 
y = km + l and 0 ≤ l < m.  Now r = x mod m and l = y mod m.  If x mod m = y mod m, then l = r so 
that x - y = qm - km = (q-k)m, a multiple of m; thus xRy.  Conversely, supppose that m divides 
x - y = (q - k)m + (r - l).  Then r - l must also be a multiple of m.  Now 0 ≤ r < m and 0 ≤ l < m; so 
–m <r – l < m.  To see this, imagine that you start at 0 and go r units to the right and then l units 
to the left, so that your net displacement is r - l.  You can't go as many as m units to the right or 
less than 0 units to the left; so your net displacement can't be as much as m units to the right.  
You can't go less than 0 units to the right or as many as m units to the left; so your net 
displacement can't be as much as m units to the left – that is, -m units.  Now the only multiple of 
m that lies strictly between -m and m is 0; so r – l = 0 and x mod m = y mod m. 
 
 There are examples for which this theorem makes it easier to prove that a relation is an 
equivalence relation.  It is easier to prove that x = y or x = -y if and only if |x|=|y| than to prove 
that the relation of example 2 is an equivalence relation directly.  Here is a more extreme 
example.  Let S be the set of ordered pairs of non-zero real numbers and let R be the relation on S
defined by (a,b)R(c,d) if and only if a/c = b/d.  Here is the direct proof that R is an equivalence 

                                                                       x      y         z
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relation.  To show that (a,b)R(a,b), substitute a for c and b for d in the definition of R: (a,b)R(a,b) 
if and only if a/a = b/b, which is true because both fractions are equal to 1.  Suppose that 
(a,b)R(c,d) so that a/c = b/d.  To prove that (c,d)R(a,b) you have to prove that c/a = b/d, which 
you do by inverting both of the fractions a/c and b/d.  Finally, suppose that (a,b)R(c,d) and 
(c,d)R(e,f) so that a/c = b/d and c/e = d/f.  To prove that (a,b)R(e,f) you have to prove that 
a/e = b/f, which you do by multiplying the equation a/c = b/d by the equation c/e = d/f.  Now here 
is the short proof: a/c = b/d if and only if a/b = c/d; so the function f((a,b)) = a/b satisfies the 
sufficient condition for R to be an equivalence relation. 
 
9.4 Closures of relations 
 
 Let R be a relation on a set S.  The reflexive closure of R is the relation obtained from R 
by adding just the ordered pairs necessary to make it reflexive.  For example, suppose S is the set 
of natural numbers and R is the relation <.  Then R consists of all the pairs (x,y) such that x < y.  
To make R reflexive you have to add the pairs (x,y) such that x = y, and now you have the relation 
≤.  In general, if R is defined by a condition under which xRy, then to get the reflexive closure of 
R, you add "or x = y" to that condition.  In this example, the condition "x < y" becomes "x < y or 
x = y", which is equivalent to "x ≤ y".  
 
 Now suppose that S is of finite size n and R is represented by a graph or a matrix.  How do 
you get the reflexive closure of R?  Suppose, for example, that R is represented by the graph and 
the matrix below. 
 
 

1 2            0 1 1 0 
                        1 1 0 0 
                        0 0 0 0 
                        0 1 0 0   
 
3          4 
 

 To make R reflexive you have to add the pairs (1,1), (3,3) and (4,4).  Now the graph and 
the matrix have been changed to the ones shown below. 
 
 

 
1           2            1 1 1 0 
                         1 1 0 0 
                         0 0 1 0 
                         0 1 0 1 
 
3           4 
 

 
 
To get from R to its reflexive closure, you draw loops on all the vertices (withoout loops) 

of the graph of the relation and you change all the 0s to 1s in the principal diagonal of the matrix, 
which takes O(n) operations. 
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The symmetric closure of R is the relation obtained from R by adding just the ordered 

pairs necessary to make it symmetric.  In the infinite example above, S is the set of natural 
numbers and R is the relation <, which consists of the pairs (x,y) such that x < y.  To make R 
symmetric, you have to add the pairs (x,y) such that y < x, and you now have the relation ≠.  In 
general, if R is defined by a condition under which xRy, then to get the symmetric closure of R, 
you make the disjunction of that condition and a condition equivalent to yRx.  In this example, 
the condition "x < y" becomes "x < y or y < x", which is equivalent to "x ≠ y". 

 
Now suppose that S is of finite size n and R is represented by a graph or a matrix.  In the 

finite example above, since (1,3) and (4,2) are arcs that don't have return arcs, you have to add 
the return arcs (3,1) and (2,4), so that the graph becomes the one that is shown below together 
with its matrix, in which the elements in positions (3,1) and (2,4) have been changed from 0 to 1. 

 
 
1           2            0 1 1 0 
                         1 1 0 1 
                         1 0 0 0 
                         0 1 0 0 
 
3           4 
 

 In the graph of a relation, for every arc without a return arc you draw the return arc.  In 
the matrix, for every off-diagonal 1 that sees a 0 in the principal-diagonal mirror, you change that 
0 to 1: that is, for every x and y, if MR[x,y] = 1 and MR[y,x] = 0, then MR[y,x]←1 (it isn't 
really necessary to test whether MR[y,x] = 0).  This takes O( n2) operations. 
 
 The reflexive and symmetric closure of R is the relation obtained from R by adding just 
the ordered pairs necessary to make it reflexive and symmetric.  You could first make the 
reflexive closure and then the symmetric closure of the reflexive closure or do it the other way 
around and the resulting relation will be the same.  This is obvious for graphs and matrices 
because adding loops and adding return arcs are independent operations as are changing diagonal 
elements and changing off-diagonal elements (you try it with the finite example above).  In the 
infinite example, the symmetric closure of < is ≠, and to get the reflexive closure of ≠ you make 
the disjunction with =, so that x is related to y by the reflexive and symmetric closure if x ≠ y or 
x = y, that is, for all x and all y. 
 
 The transitive closure of R is the relation obtained from R by adding just the ordered pairs 
necessary to make it transitive.  Finding the transitive closure of a relation is trickier than finding 
the reflexive or symmetric closure.  You may think that all you have to do is to look at all the 
ordered triples (x,y,z) and add the pair (x,z) if xRy and yRz, but if you look at the triples in the 
wrong order the resulting relation may not be transitive, as the following example will show.  
Suppose R is the relation whose graph is shown below. 
 
1          4          3          2 
 
 Suppose you examine the ordered triples in the order given in the algorithm above that 
determines whether a relation is transitive: x goes from 1 to 4 in the outer loop, z does the same 
thing in the intermediate loop and so does y in the inner loop.  When x = 1 and z = 2, there is no y 
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such that xRy and yRz; so no new pairs are added.  When x = 1 and z = 3, there is such a y (y = 4); 
so the pair (1,3) is added and the graph now looks like the one below. 
 
1          4          3          2 
 
 Now since 1 is related to 3 and 3 is related to 2, for the relation to be transitive, 1 has to be 
related to 2.  But you have already exhausted all the triples with x = 1 and z = 2; so the pair (1,2) 
will never be added. 
 
 The same thing happens if y changes in the intermediate loop.  You don't add the pair 
(1,3) until y gets to 4, and by then it's too late to add the pair (1,2), which should have been done 
when y was equal to 3. 
 
 But now suppose that y changes in the outer loop.  When y = 3, x = 4 and z = 2, since 4R3 
and 3R2, the pair (4,2) will be added and the graph looks like the one below. 
 
1          4          3          2 
 
 Later on, y will advance to 4.  When x=1 and z=2, since 1 is related to 4 and 4 is now 
related to 2, the pair (1,2) will get added, and then, when z advances to 3, the pair (1,3) will get 
added.  The graph now looks like the one below, and you can verify that this relation is transitive. 
 
1          4          3          2 
 
 

 
 Will this approach always work?  If you examine the original graph and the final one, you 
will notice that for every pair (x,z), if there is a path of length > 0 from x to z in the original 
graph, then there will be an arc (x,z) in the final one.  In general, for every pair of vertices (x,z) 
in the graph of a relation R, if there is a path of length > 0 from x to z, then there will be an 
arc (x,z) in the graph of the transitive closure of R.  We prove this proposition by induction on 
the length n of the path from x to z. 
 

Basic step:  n = 1.  A path of length 1 is an arc; so this path is the required arc. 
 

Induction step.  Suppose that n ≥ 1 and that the proposition is true for paths of length n.  
Suppose that the graph of R has a path of length n + 1 from x to z.  Let y be the second-last vertex 
on this path.  Then there is a path of length n from x to y and an arc from y to z.  By the induction 
hypothesis, the graph of the transitive closure of R has an arc from x to y, and it also has an arc 
from y to z.  For the relation to be transitive, there must also be an arc from x to z, QED. 
 
 Suppose you take the graph of a relation R and draw an arc (x,z) for every pair of vertices 
(x,z) such that there is a path of length > 0 from x to z.  This is a necessary condition for the 
resulting relation T to be transitive, but is it a sufficient condition?  Well, if xTy, then in the graph 
of R there is a path of positive length from x to y, and if yTz, then there is also a path of positive 
length from y to z.  By following the first path from x to y and then the second path from y to z 
you get a path of positive length from x to z, so that the graph of T must contain the arc (x,z) and 
thus xTz.  The graph of the transitive closure of a relation R is obtained from the graph of R 
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by drawing an arc from x to z for every pair of vertices (x,z) such that there is a path of 
positive length from x to z in the graph of R. 
 
 Let S be the set of integers and R the relation on S defined by xRy if y = x + 1.  Use the 
above theorem to prove that the transitive closure of R is the relation <. 
 
 Using BFS we can determine, for each pair (x,z), whether there is a positive-length path 
from x to z, but there is an easier way.  The algorithm below looks at all the ordered triples 
(x,y,z), with y changing in the outer loop, and draws the arc (x,z) if there is an arc (x,y) and an arc 
(y,z). 
 
procedure Transitive_closure(G: graph of a relation R) 
    for every vertex y in G do 
        for every non-loop arc (x,y) entering y do 
            for every non-loop arc (y,z) exiting y do 
                if there isn't an arc (x,z) then draw one end if; 
            end for (y,z); 
        end for (x,y); 
    end for y; 
end Transitive_closure. 
 
 This algorithm has already been traced on the graph drawn above and it worked on this 
graph.  Will it always work?  Let a and b be two vertices of G such that there is a positive-length 
path from a to b (see the diagram below). 

a=v[0]    v[1]    v[2] ...  v[i-1]   v[i]    v[i+1]  ...  v[k]=b 

 During the execution of this algorithm, y will be set to each of the vertices of G including 
all the intermediate vertices v[1], v[2],…,v[k-1] of the path from a to b.  Let v[i] be the 
(chronologically) first intermediate vertex of the path such that y is set equal to v[i].  While y is 
equal to v[i], x will be set equal to v[i -1] and z will be set equal to v[i +1].  Since there is an arc 
from x to y and an arc from y to z, if there isn't already an arc from x to z, the algorithm will draw 
one; so that either way there will now be an arc from x to z.  There is now a path from a to b that 
avoids v[i] and doesn't contain any of the vertices that weren't originally there (see the diagram 
below).   

 
a=v[0]    v[1]    v[2] ...  v[i-1]   v[i]    v[i+1]  ...  v[k]=b 
 
 The same thing will happen with the second intermediate vertex of the path to which y is 
assigned, and the third one, and so on, until a path has been made from a to b that contains none 
of the intermediate vertices of the original path and no other vertices either.  This path is an arc 
from a to b.  If there is a positive-length path from a to b, the algorithm will draw an arc from a 
to b.  If there isn't a positive-length path from a to b, then the algorithm will not draw an arc from 
a to b, because it only draws an arc from x to z if there is a path of length 2 from x to z.  The 
algorithm correctly draws the graph of the transitive closure of the relation whose graph is G. 
 
 If G is represented by a matrix M, then the algorithm becomes the one shown below, 
which is Warshall's algorithm. 
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procedure Warshall(n: natural; M: matrix[1..n][1..n] of a relation R) 
local variables x,y,z: natural; 
    for y←1 to n do 
        for x←1 to n do 
            for z←1 to n do 
                if M[x,y] = 1 and M[y,z] = 1 then M[x,z]←1 end if; 
            end for z; 
        end for x; 
    end for y; 
end Warshall. 
 
 This algorithm takes O( n3) operations because there are 3 nested loops, each of which is 
iterated n times.  The correctness proof of this algorithm in some elementary texts uses the last 
intermediate vertex in the path and an implied loop invariant.  I think my proof is easier to 
understand. 
 
 The reflexive and transitive closure of a relation R is the relation obtained from R by 
adding just the pairs necessary to make it reflexive and transitive.  Adding all the pairs (x,x) 
beforehand to get the reflexive closure doesn't change the pairs (x,y) of distinct vertices that need 
to be added to get the transitive closure because if xRx and xRy then xRy; so you can take these 
two closures in either order. 
 
 The symmetric and transitive closure of a relation R is the relation obtained from R by 
adding just the pairs necessary to make it symmetric and transitive.  Let R be the relation whose 
graph is shown on the left below.  Its transitive closure T is shown in the middle and the 
symmetric closure of T is shown on the right. 
 
   1          2          1          2          1          2 
 
 
 
 
   3          4          3          4          3          4 
 
 Is that relation transitive?  It contains one of the forbidden configurations – an arc with a 
return arc but no loop at either vertex – so the relation is not transitive. 
 
 Now we start with the original relation and make the symmetric closure S (the diagram on 
the left below). 
 
 

1 2          1          2          1          2 
 
 
 
 

3          4          3          4          3          4 
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To make the transitive closure of this relation S, we apply the graph version of Warshall's 
algorithm.  When y = 1, there is one entering arc (2,1) and one exiting arc (1,2); so you have to 
draw the loop (2,2) (the middle diagram above).  When y = 2, there are two entering arcs (1,2) 
and (4,2) and two exiting arcs (2,1) and (2,4).  The pair of arcs (1,2), (2,1) makes you draw the 
loop (1,1).  The pair of arcs (1,2), (2,4) makes you draw the arc (1,4).  The pair of arcs (4,2), (2,1) 
makes you draw the arc (4,1).  The pair of arcs (4,2), (2,4) makes you draw the loop (4,4).  Now 
the graph looks like the one on the right above.  When y = 3 there are no entering arcs and no 
exiting arcs; so no extra arcs have to be drawn.  When y = 4 there are two entering arcs (1,4) and 
(2,4) and two exiting arcs (4,1) and (4,2).  The pair of arcs (1,4), (4,1) would make you draw the 
loop (1,1), but that loop is already there.  The other three pairs of arcs too add no new arcs; so the 
graph on the right above is the transitive closure of the graph on the left – and it is symmetric. 

 
The symmetric and transitive closure of a relation is made by first taking the symmetric 

closure and then the transitive closure and not the other way around.  But Warshall's algorithm is 
not the most efficient way of constructing the transitive closure of a symmetric relation.  In the 
graph of a symmetric relation, you can replace each pair of arcs (x,y), (y,x) by the edge {x,y} and 
get an undirected graph.  For the directed graph on the left above, the undirected version is shown 
on the left below, and for the directed graph on the right above, the undirected version is shown 
on the right below. 

 
   1          2          1          2 
 
 
 
 
   3          4          3          4 
 
 
 Now how would you get from the graph on the left above to the graph on the right?  
Notice that the graph on the left is not connected.  It has two "pieces", one consisting of the 
vertices 1,2,4 and one consisting of the vertex 3.  In the graph on the right, every pair of vertices 
in the same piece is connected by an edge and there is a loop at every vertex except vertex 3, 
which is isolated (degree 0).  Does this process always construct the transitive closure of a 
symmetric relation? 
 
 First, let's define "piece" more rigourously.  Given an undirected graph G with vertex set 
V, define the relation R on V as xRy if there is a path in G from x to y.  This relation is reflexive 
because there is a path of length 0 from x to x for every vertex x.  The relation is symmetric 
because the graph is undirected; so if there is a path from x to y, following the path backwards 
makes a path from y to x.  And the relation is transitive because if there is a path from x to y and a 
path from y to z, then by following the first path from x to y and then the second path from y to z 
you get a path from x to z.  Thus R is an equivalence relation.  The equivalence classes are called 
the connected components of G, and for each vertex x, [x] is the set of vertices y such that there is 
a path from x to y. 
 
 Suppose that x and y are two distinct vertices in the same connected component of G.  
Then there is a positive-length path from x to y in the directed version of G, so that there must be 
an arc from x to y in the transitive closure of (the relation whose graph is) G.  But since the 
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relation is symmetric, there must be a path from y to x in G; so there is also an arc from y to x in 
the transitive closure of G, and in the undirected version of G there is an edge {x,y}.  If x and y 
are in different connected components of G, then there is no path from x to y, so there is no edge 
{x,y} in the transitive closure of G.  Now suppose that x is a non-isolated vertex.  Then x has at 
least one neighbour y.  In the undirected version of G there is an edge {x,y}; so in the directed 
version there are the arcs (x,y) and (y,x).  But for the relation to be transitive, there must be a loop 
at the vertex x.  On the other hand, if x is an isolated vertex, there is no positive-length path from 
x to any vertex; so in the transitive closure there is no arc from x to any vertex including x, hence 
no loop at x.  To get the transitive closure of a symmetric relation, divide the undirected 
graph of the relation into connected components, draw an edge between every pair of non-
adjacent vertices in the same component and draw a loop at every non-isolated vertex that 
doesn't already have a loop. 
 
 This process is clearly easier to execute by hand than Warshall's algorithm.  Is it any more 
efficient by computer?  Remember that at the end of Chapter 8 I promised you that there would 
be another application of BFS in Chapter 9?  A slight modification of BFS divides a graph into 
connected components.  You don't initialize the array P to zero, and instead of setting P[v] to u 
you set P[v] to s.  With this modification of BFS, the algorithm below divides an undirected 
graph into connected components. 
 
procedure Components(n: natural; G: n-vertex graph) 
    local variable s: natural; 
    for s←1 to n do P[s]←0 end for; 
    for s←1 to n do 
        if P[s] = 0 then BFS(G,s,P) end if; 
    end for; 
end Components. 
 
 We trace this algorithm on the graph drawn below. 
 
   2     4    3    6    5    9   i= 1  2  3  4  5  6  7  8  9 10 
                               P[i] 0  0  0  0  0  0  0  0  0  0 
                               s=1: 1  1  0  1  0  0  1  0  0  0 
   7     1       8      10     s=2: no change because P[2]≠0 
                               s=3: 1  1  3  1  0  3  1  3  0  0 
                               s=4: no change 
                               s=5: 1  1  3  1  5  3  1  3  0  5 
                               s=6,7,8: no change 
                               s=9: 1  1  3  1  5  3  1  3  9  5 
                               s=10: no change.  P is final. 
 
 After this algorithm has been executed, for each pair of vertices (x,y), x and y are in the 
same component if and only if P[x] = P[y].  For each pair of vertices x and y such that x < y, if 
P[x] = P[y] and there isn't an edge between x and y, then you draw one (in matrix form, you set 
M[x,y] and M[y,x] to 1 without testing whether those elements were initially 0); this does O( n2) 
operations.  Then, for each vertex x of degree > 0 you draw a loop at x if there isn't already a loop 
there (you set M[x,x] = 1) – this does O(n) operations.  If you want the transitive and reflexive 



 122 
closure of a symmetric relation, or the reflexive, symmetric and transitive closure of an arbitrary 
relation, then you draw a loop at every vertex whether or not it is of degree 0. 
 
 How many operations does the algorithm Components do?  Each execution of BFS(G,s,P) 
looks at all the neighbours of each vertex u in the connected component [s] of G containing s; so 
the number of operations done by this call to BFS is proportional to n times the number of 
vertices in [s].  The total number of operations done by all the calls to BFS is thus proportional to 
n times the total number of vertices, which is in O( n2).  The number of operations done to 
manage both of the loops is O(n); so the algorithm Components runs in O( n2) time (or O(m+n) 
for sparse graphs with m edges represented by adjacency lists).  Since the rest of the procedure 
for finding the transitive closure of a symmetric relation also runs in O( n2) time, the whole 
procedure runs in O( n2) time, which is more efficient than Warshall's algorithm, which runs in 
O( n3) time.  There are asymptotically faster transitive closure algorithms than Warshall's, but 
none of them run in O( n2) time; so this way of finding the transitive closure of a symmetric 
relation is an improvement over using an algorithm for finding the transitive closure of an 
arbitrary relation.  This is another result that I obtained independently and I haven't found it in the 
literature yet, but I'd be very surprised if it isn't there somewhere! 
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CHAPTER 10. GENERATING COMBINATORIAL OBJECTS 

 
 Suppose you want to construct the truth table of some long and complicated Boolean 
expression with many distinct variables.  Finding the truth value of such an expression for each 
assignment of truth values to the variables is slow and error-prone by hand but it is easy to write 
a computer program to do it.  But then you would need to write a program to generate all the 
strings of 0 and 1 that represent the assignment of truth values to the variables.  More generally, 
you may want to write a computer program to generate a list of words (strings of symbols) that 
represents a set of combinatorial objects such as subsets of a set, combinations, permutations, 
compositions of an integer, partitions of a set, partitions of an integer, balanced parenthesis 
systems, trees, graphs or maps (graphs drawn on surfaces) so that you can get your computer to 
study the properties of these objects faster and more accurately than you could by hand.  There 
are many books and articles on this subject.  One of the most comprehensive is [Albert Nijenhuis 
and Herbert S. Wilf, Combinatorial Algorithms for Computers and Calculators, Academic Press, 
1978].  But I'll restrict myself to three of these objects – the strings of 0 and 1 that represent 
subsets of a set (and truth values), the strings of positive integers that represent permutations and 
the strings of 0 and 1 that represent balanced parenthesis systems. 
 
10.1 Lexicographical order 
 
 The easiest way to generate a set of words is to generate them in lexicographical order, 
the order in which words are listed in a dictionary.  Assuming that the set of letters (the symbols 
of which the words are composed) is ordered, words can be ordered by comparing the first (that 
is, leftmost) letter in which the words differ; if none of the letters differ, then the shorter word 
comes before the longer one.  The word the word string comes before the word supper because 
they have the same first letter but the second letter of string comes before the second letter of 
supper and the word ball comes before the word ballistic. 
 
 Here is a list of the 16 binary strings (strings of 0 and 1, which are called bits) of length 4 
in lexicographical order (ignore the number to the right of each string for the moment): 
 

0000  1 
0001  2 
0010  1 
0011  3 
0100  1 
0101  2 
0110  1 
0111  4 
1000  1 
1001  2 
1010  1 
1011  3 
1100  1 
1101  2 
1110  1 
1111  5 
total 31 
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You could generate the list of binary strings of length n recursively by generating the 
strings of length n – 1 twice, putting a 0 in front of all the strings in the first list and a 1 in front of 
all the strings in the second list, but if you want to know what string follows the current one you 
need to find a non-recursive description of this list.  Examining the list above, you can observe 
that the first string is 00…00 and that to get from one string to the next, you start from the right 
end of the string, changing each 1 you meet to a 0 until you come to a 0; then you change that 0 
to a 1 and then quit.  If you applied that algorithm to the last string 11…11, you would change it 
to 00…00 and never quit; so you create a bit before the first one – a sentinel – and set it to 0.  
Then after the real string gets changed to 00…00, the sentinel gets changed to 1, which tells you 
that 11…11 was the last string and the new one isn't to be processed.  This is the way an 
odometer in a car works; for instance, the number 345999 gets changed to 346000 and the 
number 999999 gets changed to 000000 – the sentinel then tells you that it's time to buy a new 
car.  With an odometer the biggest digit is 9 and with binary strings it's 1, but in either case it gets 
changed to the smallest digit, which is 0, and the digit to the left of the string of biggest digits 
gets increased by 1. 
 
 What is the total number of changes that are made when you generate the whole list?  The 
number to the right of each binary string is the number of bits, including the sentinel, that get 
changed in passing from that string to the next one.  The total number of bits that get changed is 
31, and you may guess from this number that for binary strings of length n the total number of 
changes is 2n+1 − 1.  You could prove this assertion by standard induction on n, but if you don't 
know the answer in advance, you'd want to be able to derive it from scratch.  There's a way to do 
this that takes horse power and a way that takes brain power. 
 
 The horse power method involves counting the number of strings that require i changes, 
multiplying by i and then summing over all possible i.  If the last bit is 0, only 1 bit gets changed.  
This is the case for half of the 2n binary strings of length n; that is, for 2n−1 strings.  If the last bit 
is 1 but the second-last bit is 0, then 2 bits get changed.  This is the case for a quarter of the 
strings – for 2n−2 strings.  Similarly, 3 bits get changed in 2n−3 strings, and so on until all n bits 
get changed in 1 string (0111…1) and n + 1 bits including the sentinel get changed in 1 string 
(11…11).  So the total number of changes is 
 

  2n−1 + 2 × 2n−2 + 3 × 2n−3 + L + (n − 2) × 22 + (n − 1) × 21 + n × 20 + (n +1). 
 
 How would you find a formula for this monstrous sum?  Before attempting this feat, I'll 
tell you another story.  One New Year's Eve a father, hoping to teach his son to work for his 
money, offered to pay him to do the dishes every day instead of giving him an allowance.  His 
son agreed on condition that he get paid 1 cent on January 1, 2 cents on January 2, 4 cents on 
January 3, 8 cents on January 4 and so on until the end of the month.  Not having studied 
mathematics beyond grade 10, the father agreed.  After a week the father realized that the price 
he would have to pay would soon grow beyond his means; so he cancelled the agreement and 
excused his son from any more dishwashing.  How much would he have had to pay his son had 
he continued to double the salary each day until the end of the month? 
 
 For a month with n + 1 days, the total price, denoted by S, is given by the formula 
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  S = 20 + 21 + 22 + L + 2n+1 + 2n. 
 

To be able to cancel out most of the terms in the above equation, we multiply each of them by 2: 
 

  2S = 21 + 22 + 23L + 2n + 2n+1. 
 

Now we subtract the first equation from the second one.  Most of the terms cancel out and we get 
S = 2n+1 − 1.  With n = 30 (since January has 31 days), this means that the father would have had 
to pay his son $21474836.47. 
 
 This kind of series of numbers is called a geometric series.  The most general form of 
such a series is   a + ar + ar2 + L + arn.  I invite you to find a formula for the sum of this series 
in two cases: when r ≠ 1 and when r = 1. 
 
 Now the series we have to sum is more complicated than a geometric series, but the same 
trick used to sum a geometric series will reduce the series we have to sum to a geometric series.  
Ignoring the term n + 1 for the moment, writing the rest of the series backwards and equating it to 
S, we get 
 

  S = n × 20 + (n − 1) × 21 + (n − 2) × 22 + L + 3 × 2n−3 + 2 × 2n−2 + 2n−1. 
 
Again we multiply by 2: 
  

  2S = n × 21 + (n − 1) × 22 + (n − 2) × 23 + L + 3 × 2n−2 + 2 × 2n−1 + 2n. 
 
And again we subtract the first equation from the second one: 
 

  S = 21 + 22 + 23 +L + 2n−2 + 2n−1 + 2n − n. 
 
Now except for the the –n we have a geometric series which is the same as the one we have 
already summed except that the term 20 = 1 is missing; so its sum is 2n+1 − 2.  We have to 
subtract n from this sum and we also have to add n + 1; so the total number of changes is 
2n+1 − 1. 
 
 The brain power method involves counting the number of times that each bit gets 
changed.  The rightmost bit gets changed in half the strings; that is, 2n−1 times.  The second 
rightmost bit gets changed in a quarter of the strings - 2n−2 times - the third rightmost bit 2n−3 
times and so on until the leftmost bit gets changed twice and the sentinel once; so the total 
number of changes is   20 + 21 + 22 + L + 2n+1 + 2n = 2n+1 − 1.  The average number of changes 
over all the 2n binary strings of length n is 2 – 1/ 2n, which approaches 2 as n approaches infinity.  
The algorithm for generating the binary strings in lexicographical order runs in constant average 
time, or CAT for short.  Well, if the truth be told, CAT stands for constant amortized time, but 
whatever the A stands for, I can assure you that this acronym has nothing to do with either felines 
or DNA sequences. 
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 If you want to generate a random binary string, all you have to do is toss a fair coin for 
each of the n bits, making the bit 1 if the coin lands heads and 0 if the coin lands tails.  On a 
computer, that would mean making each bit either a 0 or a 1 with equal probability using a 
random number generator. 
 
 In what follows we need to define two parts of a word   x1, L , xn: a prefix   x1, L , xi  of 
length i consists of the i leftmost symbols of the word and a suffix   xn−i+1, L , xn of length i 
consists of the i rightmost symbols of the word.  Here i can be any number from 0 to n inclusive.  
If i = 0, the prefix or the suffix is empty and if i = n, it's the whole word. 
 
 A permutation of length n is an arrangement of the numbers 1, 2, … , n.  There are n! 
permutations of length n.  There are n ways to choose which of the n numbers to put first, and for 
each of these ways there are n – 1 ways to choose which of the remaining n – 1 numbers to put 
second, for a total of n(n-1) ways to fill the first two positions, and for each of these ways there 
are n – 2 ways to choose which of the remaining n – 2 numbers to put third, for a total of 
n(n-1)(n-2) ways to fill the first three positions, and so on until the last position is filled with the 
last remaining number; so the total number of ways to arrange the n numbers is n! 
 
 Here is a list of the 24 permutations of length 4 in lexicographical order: 
 

1234 
1243 
1324 
1342 
1423 
1432 
2134 
2143 
2314 
2341 
2413 
2431 
3124 
3142 
3214 
3241 
3412 
3421 
4123 
4132 
4213 
4231 
4312 
4321 

 
 In the first permutation the numbers are increasing order and in the last string they are in 
decreasing order, but these strings of numbers are too short to illustrate the method of changing 
each permutation to its lexicographical successor; so we choose a longer example: 62358741.  
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The only way to change a permutation is to exchange two of its numbers.  If you want to make 
the pemutation lexicographically bigger, you have to exchange a number with a bigger number 
on its right.  Now the last four numbers of 62358741 are in decreasing order from left to right; so 
none of them have a bigger number on its right and you have to choose some number to the left 
of these four numbers.  The further left you go, the bigger the lexicographical increase you'll 
make; so you have to choose the rightmost number that has a bigger number on its right, that is, 
the 5.  And you have to exchange it with the smallest number on its right that is bigger than 5, 
that is, the 7.  Once you do this, the permutation becomes 62378541.  Note that the last four 
numbers are still in decreasing order from left to right, but not the last five numbers.  Of all the 
permutations that start with 6237, this one is the biggest and we have to make it the smallest; so 
we reverse the suffix 8541 and we get 62371458.  This is the analogue of changing each 1 on the 
right of a binary string to 0 and the rightmost 0 to 1: we increase by the minimal amount the 
rightmost number that can be increased and then we make everything to its right as small as 
possible. 
 
 Here is the algorithm for finding the successor of a given permutation a[1]a[2]…a[n]: 
 
Boolean function nextperm(n: natural, a: array[1..n] of natural) 

{precondition: The array a consists of distinct members of the set {1,2,…,n}}. 
    local variables i, j: natural; 
    i ← n – 1;                       {First we look for the rightmost element a[i] such that a[i] < a[i+1].} 
    while (i > 0) and a[i] > a[i+1] do 
        i ← i – 1; 
    end while; 
    if i = 0 then return true end if;                           {true means that the permutation was n…21.} 

{We haven't returned; so i > 0 and a[i+1] > a[i+2] > … > a[n] but a[i] < a[i+1].} 
    j ← n;                  {Now we look for the smallest element among a[i+1],…,a[n] that is > a[i].}  
    while a[j] < a[i] do 
        j ← j – 1; 
    end while;                                                                                                    {a[j]  > a[i] > a[j+1]} 
    exchange (a[i], a[j]);               {a[i+1] > a[i+2] > … > a[n] is still true.  We reverse this suffix.} 
    for j from 1 to floor((n-i)/2) 
        exchange(a[i+j], a[n+1-j]); 
    end for; 
    return false; 
end nextperm. 
      
 What is the average number of exchanges that this algorithm will do for big n?  The first 
step is to find the total number of exchanges, or at least an approximation to this number that is 
accurate enough that the error tends to 0 as n tends to infinity.  The horse power method is to 
count the number of permutations that require i exchanges, multiply by i and sum over i.  This 
can be done, but it takes several pages and is error-prone; so I'll spare you the details and show 
you the brain power method: you count the number of permutations for which each element gets 
exchanged with an element on its left.  For the moment we ignore the fact that the last 
permutation is not changed. 
 
 The first exchange instruction – exchange(a[i], a[j]) – is done for every permutation; so it 
happens n! times.  When the longest suffix such that a[i+1] > a[i+2] > … > a[n] gets reversed, 
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a[n] gets exchanged with a number on its left if this suffix is of length at least 2.  This happens if 
a[n] < a[n-1].  For every permutation that satisfies this condition, there are 2! permutations 
altogether - you get them by making the 2! permutations of a[n] and a[n-1]; so that the number of 
permutations that satisfy this condition is n!/2!.  Also, a[n-1] gets exchanged with a number on its 
left if this suffix is of length at least 4.  This happens if a[n] < a[n-1] < a[n-2] < a[n-3], and since 
there are 4! ways to arrange that suffix, the number of permutations that satisfy that condition is 
n!/4!.  Continuing this process, we find that the total number of exchanges is  
 

n!(1 + 1/2! + 1/4! + 1/6! + …). 
 

Of course, this series doesn't really go on forever, because the length of the suffix can't 
exceed n – 1.  The expression for the last term is complicated – it depends upon whether n is odd 
or even – but we can ignore the fact that the series stops because we want to divide by n and then 
take the limit as n approaches infinity.  And we can also continue to ignore the fact that the last 
permutation doesn't get changed because the number of exchanges wouldn't exceed n, and when 
you divide n by n! and let n tend to infinity, the quotient tends to 0.  In the limit, then, the average 
number of exchanges is 1 + 1/2! + 1/4! + 1/6! + … to infinity. 
 
 Now you may recall a series that looks something like this sum.  It's in Section 3.2: 
 

ex =1 + x +
x2

2 ! +
x3

3 ! +
x4

4 ! + ... 
 

Substituting x = 1 into this series, we get 
 

e = 1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! +… 
 
Substituting x = -1 into the same series, we get 
 

1/e = 1 – 1 + 1/2! – 1/3! + 1/4! – 1/5! + 1/6! - … 
 
Adding these two equations, we get e + 1/e = 2 + 2/2! + 2/4! + 2/6! + …; so as n tends to infinity, 
the average number of exchanges tends to (e + 1/e)/2 = 1.543080635… 
 
 Nextperm too is a CAT algorithm. 
 
 To generate a random permutation of length n, you would do a sort of randomized 
selection sort.  For each i from 1 to n – 1, instead of exchanging a[i] with the smallest element 
among a[i]…a[n], you exchange it with a[j], where j is an integer chosen at random from the 
integers i,…,n. 
 
 A balanced parenthesis system of length 2n, also called a Dyck word after the German 
mathematician Walther Franz Anton von Dyck, consists of n left parentheses and n right 
parentheses such that among the first i parentheses there are at least as many left parentheses as 
right parentheses.  If you change each left parenthesis to a 1 and each right parenthesis to a 0, the 
Dyck word becomes a binary string   b1b2b3Lb2n such that any prefix   b1b2b3Lbi  has at least as 
many 1s as 0s.   For example, the binary string 11010010 represents the Dyck word ( ( ) ( ) ) ( ).  
A Dyck path is a series of steps in the plane, starting at the origin, each one going east one unit 
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and either north (for a 1) or south (for a 0) one unit, that ends on the x axis and never goes below 
it.  The Dyck path corresponding to the binary string 11010010 is shown below. 
 
                    O                  O 
 
          O                 O                  O                   O 
 
O                                                           O                   O 
 
 How many Dyck words are there of length 2n?  This problem was solved by several 
people in 1887; the most direct solution appears in [D. André, Solution directe du problème 
résolu par M. Bertrand, Comptes Rendus de l’Académie des Sciences, Paris 105 (1887) 436–
437].  It was stated in terms of ballot counting: if two candidates got the same number of votes, in 
how many ways can the scrutineer count the ballots so that his favourite candidate never trails his 
opponent?  If you have read this far, you will know by now that I wouldn't be satisfied with such 
a serious model.  Instead, suppose that a drunkard gets booted out of a bar by the bouncer, who 
threatens to twist his neck if he takes one step inside the bar before he sobers up.  Starting at the 
entrance to the bar, the drunkard takes 2n random steps, either away from the bar or towards it, 
without ever entering the bar, until he collapses in a heap at the entrance to the bar.  In how many 
ways can he do this? 
 
 If the bouncer had not made this threat, the drunkard could have taken any sequence of n 
steps north (away from the bar) and n steps south.  Among the 2n steps, n of them are chosen to 
be north.  In how many ways can you choose n objects out of 2n?  More generally, in how many 
ways can you choose r objects out of n?  Recall that there are n! ways to permute n objects.  
Suppose you want to choose r of them and permute them – that is, among the n objects, you want 
to choose one to be first, one to be second and so on up to r of them.  There are n ways to choose 
the first object, n –1 ways to choose the second object and so on – the object to be put in the rth 
place can be chosen in n – r + 1 ways, so that the total number of ways to choose all the r objects 
and permute them is n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.  But you only want to choose them, not to 
permute them too.  For each choice of those r objects, there are r! ways to permute them; so the 

number of ways to choose them without permuting them is n!
(n − r )!r! .  This is sort of like 

counting the cows in a field by counting the legs and dividing by 4; it sounds more complicated 
than counting the cows directly, but in this case it's actually easier.  Anyway, since the drunkard 

is choosing n of his 2n steps to be north, the number of ways he can to it is (2n)!n!×n! . 
 
 Now some of these choices will lead him into the bar.  As soon as he takes one step inside 
the bar, the bartender will twist his neck by 180 degrees, which will reverse all of the drunkard's 
subsequent steps.  So instead of going from one step inside the bar to the entrance, he will go 
from one step inside the bar to two steps inside the bar before he collapses, meaning that he will 
have taken n - 1 steps north and n + 1 steps south (see the diagram below).  The transformation 
done by the bouncer is uniquely reversible; if the drunkard had taken any combination of n - 1 
steps north and n + 1 steps south without getting his neck twisted, he would have collapsed two 
steps inside the bar, but instead, when he gets one step inside the bar, the bouncer twists his neck 
and he collapses at the entrance.  This establishes a bijection between the set of walks that go 
inside the bar and end at the entrance and the set of all the walks that end two steps inside the bar; 
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so the number of walks that go inside the bar and end up at the entrance is equal to the number of 

ways of choosing n – 1 steps out of 2n to go north, which is (2n)!
(n − 1)!(n +1)! . 

 
                    O                  O 
 
          O                 O                  O                    
 
O                                                           O                    O  The drunkard would have gone here, 
 
                                                                         O      but the bouncer twisted his neck here; 
 
                                                                                     O so the drunkard went here instead. 
 

 Among the (2n)!n!×n!  walks that end at the entrance, (2n)!
(n − 1)!(n +1)!  enter the bar; so the 

number of walks that don't enter the bar is equal to (2n)!
n!×n! − 

(2n)!
(n − 1)!(n +1)! =

(2n)!
n!(n +1)! .  The 

numbers C(n) = (2n)!
n!(n +1)!   are called the Catalan numbers, named after the Belgian 

mathematician Eugène Charles Catalan, and they count a large number of combinatorial objects, 
including the triangulations of a polygon with n + 2 sides, the ways of parenthesizing n + 1 
factors and various sorts of trees including binary trees.  A table of Catalan numbers can be 
constructed by using the recursive definition C(0) = 1, C(n) = (4n-2)C(n-1)/(n+1) if n ≥ 1 (you 
prove it).  The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132 (you calculate these numbers 
and the next few).  Below are the 14 Dyck words of length 8 in lexicographical order: 
 

10101010 
10101100 
10110010 
10110100 
10111000 
11001010 
11001100 
11010010 
11010100 
11011000 
11100010 
11100100 
11101000 
11110000 

  
 The first Dyck word of any (even) length is 101010…10 and the last one is 
11…1100…00.  How do you transform a given Dyck word into its successor?  You have to 
change to a 1 the rightmost 0 that can be changed.  If a 0 is followed only by 0s, it can't be 
changed to a 1 because there would be no way to restore the equality between the number of 0s 
and the number of 1s by changing any of the numbers to the right of that 0.  If the drunkard was 
going to go straight to the entrance to the bar before he collapsed and then changed his mind and 
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took one step away from the bar, he'd collapse before he made it to the entrance.  So you have to 
change to a 1 the rightmost 0 that has a 1 to its right.  You find it by starting at the rightmost bit 
and passing over all the 0s until you get to a 1 and then over all the 1s until you get to a 0.  If you 
never get to a 0 after encountering 1s, the Dyck word is 11…1100…00, the last one in 
lexicographical order, and you quit generating them.  Otherwise you change to a 1 the first 0 you 
encounter after encountering some 1s.  Then you want to make the suffix following that new 1 as 
small as possible lexicographically; so you pad with 0s until there are as many 0s as 1s in the 
prefix (after you make the drunkard change a southward step to a northward one, you send him 
straight to the entrance to the bar) and then you pad with 10…10 until the word has 2n numbers 
(you make him alternate northward steps with southward ones until he collapses).  How do you 
know how many 0s to add before you start adding 10?  You count the 0s as you pass over them, 
then you subtract 1 from that number every time you pass a 1.  In this way, you're tracing 
backwards the drunkard's last few steps and keeping track of the number of steps he is away from 
the bar.  When (or if) you next encounter a 0, the number you have is the number of steps the 
drunkard is away from the entrance to the bar after he made the southward step represented by 
that 0.  When you change the 0 to a 1, you've sent him 2 steps farther from the bar; so you add 2 
to the number, and that's the number of 0s you have to add before you start adding 01. 
 
Here is the algorithm: 
 
Boolean function NextDyck (n; natural; b: array[1..2*n] of {0,1}) 
    local variables d, k: natural; 
    d ← 0; 
    k ← 2*n; 
    do                                                                               {Search for the rightmost occurrence of 1.} 
        d ← d + 1; 
        k ← k – 1; 
    while b[k] = 0; 
    do                                                                            {Search for the rightmost occurrence of 01.} 
        d ← d – 1; 
        k ← k – 1; 
    while (k > 0) and (b[k] = 0);  { d is now the number of 1s minus the number of 0s in b[1..k].} 
    if k = 0 then return true end if;                                                                 {b is 11…1100…00} 
    b[k] ← 1;                                                                      {Change the 0 in the rightmost 01 to 1.} 
    d ← d + 2; 
    do                                        {Append 0s to the right of this new 1 until the prefix is balanced.} 
        k ← k + 1; 
        b[k] ← 0; 
        d = d ← 1; 
    while d > 0; 
    while k < 2*n                                                          {Pad with 10 until the word is of length 2n.} 
        k ← k + 2; 
        b[k-1] ← 1; 
        b[k] ← 0; 
    end while; 
    return false; 
end NextDyck. 
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 How many bits get written, on the average, in transforming each Dyck word to its 
successor?  This number tends to 16/3 as the length of the word approaches infinity.  The proof is 
too long and complicated to be included here, but I'll tell you where to find it and how I 
discovered it. 
 

I found four articles, each of which use a different method for generating binary trees, and 
I wanted to know the extent to which the theoretical estimate of the average time complexity 
coincides with the experimental estimate found by programming and executing each of those 
methods.  Being too lazy to do the programming myself, I hired a second-year undergraduate 
student, Pierre Auger (who is now Dr. Auger) to do the programming for me.  If that's all he did, 
I would merely have acknowledged his contribution at the end of the article I submitted on the 
subject.  But instead he found errors in the description of some of the algorithms and corrected 
them; so I included him as a joint author.  One of those articles [T.R. Walsh, Generating 
nonisomorphic maps without storing them, SIAM Journal of Algebraic and Discrete Methods, 
Vol. 4 (1983), 161-178] contains the above algorithm without a time-complexity analysis; so I 
proved, using the horse power method, that the total number of bits that get written in 
transforming all the Dyck words of length n is C(1) + C(2) + … + C(n+1) and that when you 
divide that number by C(n) the quotient tends to 16/3 as n tends to infinity.  The joint paper [P. 
Auger and T.R. Walsh, Theoretical and Experimental Comparison of Four Binary-tree 
Generation Algorithms, Congressus Numerantium 93 (1993), 99-109] omits most of the tedious 
details of the derivation of the formula C(1) + C(2) + … + C(n+1), which occupy several pages.  
I later used the brain power method to derive this formula and published it in [P. Auger and T.R. 
Walsh, Addendum to Theoretical and Experimental Comparison of Four Binary-tree Generation 
Algorithms, Congressus Numerantium 112 (1995), 3-5]; so the entire proof is contained in the 
union of these two articles. 

 
It turns out that the above algorithm is neither the first nor the most efficient one for 

generating Dyck words in lexicographical order.  The one in [I. Semba, Generation of all the 
balanced parenthesis strings in lexicographical order, Information Processing Letters 21 (1981), 
188-192] examines an average of 3 bits instead of 16/3.  I include my algorithm here because it's 
mine and because it gives me the opportunity to pursue the model of the drunkard's walk. 
 
 The methods known for generating a random Dyck word are also too complicated to be 
included here.  If you're interested, you can find one of these methods and a reference to another 
one in [Dominique Gouyou-Beauchamps, Combinatorics and Random Generation, Algorithms 
Seminar 2001-2002, F. Chyzak (ed.), INRIA, (2003), 177-182]. 
 
10.2 Gray codes 
 
 In another computer game I played, you travel from one time period to another in a time 
machine.  In each time period there are things to do and you have to do them quickly because the 
time machine is programmed to return to its original time period after a certain period of time.  In 
one of these time periods there is a locked sarcophagus you have to open.  The sarcophagus has 8 
levers, each in the down position, and you can toggle them between the down position and the up 
position, but only one lever at a time.  One combination of positions of all the levers will unlock 
the sarcophagus, but the game gives you no hint as to what combination that is; so you have to 
keep trying them until you get the right one.  The positions of the levers can be expressed as a 
binary string of length 8, with down represented by 0 and up by 1.  I started generating all these 
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combinations of positions in lexicographical order, but I was too slow: before I could get the 
right combination, the time machine vanished, stranding me in that time period, and I lost the 
game.  Apparently, doing an average of two lever pulls to get from one combination of positions 
to the next just won't cut it. 
 
 Fortunately there is a way of ordering the length-n binary strings so that each string 
differs from its predecessor in a single bit.  It was invented by Frank Gray to prevent spurious 
output from electromechanical switches and published in [Gray, F.: Pulse Code Communication. 
U.S. Patent 2 632 058 (March 17, 1953)].  Here are the lists of length-n in Gray's order for the 
first few values of n. 
 
n = 0  n = 1  n = 2  n = 3  n = 4 
 
           0     00    000   0000 
           1     01    001   0001 
                 11    011   0011 
                 10    010   0010 

110 0110 
111 0111 
101 0101 
100   0100 
      1100 
      1101 
      1111 
      1110 
      1010 
      1011 
      1001 
      1000 

 
 By examining these lists you can discern the pattern: to construct the list of words of 
length n, you write down the list of words of length n – 1, putting a 0 to the left of each word, and 
then you write down the list of words of length n – 1 backwards, putting a 1 to the left of each 
word.  In each list, only one bit changes in passing from one binary string to the next one.  But a 
recursive description is difficult to execute by hand when you can't see all the words in front of 
you.  A non-recursive description was in order. 
 
 Look again at the list of length-4 binary strings in lexicographical order.  All the words 
with the same prefix are grouped together, and the bit immediately to the right of this prefix is 
first 0 and then 1, so that it follows the sequence (0, 1).  The leftmost bit that changes is the 0 
immediately to the left of a suffix of 1s because 1 is the last member of the sequence of values 
attained by each bit.  Now in Gray's list, putting a 1 in front of a list reverses that list; so putting 
an odd number of 1s in front of a list will reverse the sequence followed by each bit: if the prefix 
has an odd number of 1s, then the next bit will follow the sequence (1, 0) whereas if the prefix 
has an even number of 1s, then the next bit will follow the sequence (0, 1).  Check out the lists 
above to verify this assertion. 
 
 Now suppose the whole word has an even number of 1s.  If the rightmost bit is 0, it has an 
even number of 1s to its left; so its sequence is (0, 1) and it is not at its last value.  If the 
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rightmost bit is 1, it has an odd number of 1s to its left; so its sequence is (1, 0) and it is not at its 
last value.  Either way, it's the rightmost bit that changes. 
 
 Now suppose the whole word has an odd number of 1s.  If the last bit is a 0, it has an odd 
number of 1s to its left; so its sequence is (1, 0).  It is at its last value; so it can't change.  The 
same holds true for any 0 in a suffix of 0s.  If there is an odd number of 1s, there must be at least 
one of them.  The rightmost 1 has an even number of 1s to its left; so it's sequence is (0, 1).  This 
bit too is at its last value; so it too can't change.  But the bit immediatetly to left of the rightmost 1 
is the rightmost bit of a prefix with an even number of 1s; so its situation is the same as the 
rightmost bit of a whole binary string with an even number of 1s: whether it is a 0 or a 1 it is not 
at its last value; so it changes.  And if there aren't any bits to the left of the rightmost 1; then the 
string is 10…0, the last string on the list. 
 
 Each time a bit is changed, the parity of the number of bits that are 1 changes too.  
Starting with the string 00…00 and a Boolean variable Odd set to false, you execute the 
following procedure: 
 
if (Odd) then  
    search the string from right to left until you get to a 1; 
    if this 1 is the leftmost bit then quit generating; 
    else change the bit immediately to the left of this 1; end if; 
else 
    change the rightmost bit; 
end if; 
change Odd to not(Odd). 
 
 Following this procedure, I managed to find the right combination of positions of the 
levers to open the sarcophagus in time to get to the time machine before it vanished, and I 
eventually won the game. 
 
 In honour of Frank Gray, any list of words that satisfies some closeness criterion for 
adjacent words in a list is called a Gray code.  Gray codes have been invented for many 
combinatorial objects, including combinations, permutations, compositions of an integer, 
partitions of a set, partitions of an integer and Dyck words.  A survey of Gray codes can be found 
in [C. D. Savage, "A survey of combinatorial Gray codes", SIAM Review , 39, No. 4, 1997 605-
629]. 
 
 Of course, Gray codes are useful for more than just playing computer games.  If two 
successive words representing a combinatorial object differ only slightly, then some of the 
properties of that object can be updated quickly.  For example, binary strings of length n 
represent subsets of a set of n elements, and when one bit changes, the cardinality of the subset 
changes by 1; so as you generate all the subsets, you can update the cardinality quickly. 
 
 Another example of a property that can be updated quickly with the help of a Gray code is 
the number of inversions of a permutation.  An inversion of a permutation is a pair of elements 
such that the bigger one is to the left of the smaller one.  For example, the permutation 53241 has 
8 inversions: 53, 52, 54, 51, 32, 31, 21 and 41.  When you exchange two adjacent elements p(i) 
and p(i+1) of a permutation, the number of inversions increases by 1 if p(i) < p(i+1) or decreases 
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by 1 if p(i) > p(i+1); so if the set of permutations of {1, 2, … , n} is generated in an order such 
that each permutation differs from its predecessor by a transposition of adjacent elements, the 
number of inversions can be updated quickly. 
 
 Among the Gray codes for permutations there is one that transposes adjacent elements.  It 
was discovered independently by Johson [S.M. Johnson, Generation of permutations by adjacent 
transpositions, Mathematics of Computation 17 (1963), p. 282-285] and Trotter [H.F. Trotter, 
Algorithm 115: Perm, Communications of the ACM 5 (1962), 434-435]; so it's called the 
Johnson-Trotter Gray code.  Here is a list of the 24 permutations of length 4 as they are generated 
by this Gray code, with the number of inversions to the right of each permutation. 
 

       Perm. #inversions 
 

1234     0 
1243     1 
1423     2 
4123     3 
4132     4 
1432     3 
1342     2 
1324     1 
3124     2 
3142     3 
3412     4 
4312     5 
4321     6 
3421     5 
3241     4 
3214     3 
2314     2 
2341     3 
2431     4 
4231     5 
4213     4 
2413     3 
2143     2 
2134     1 

 
 Examining this list of words, you can see that the largest number (4) moves first from 
right to left until it gets to its final position – at the left end of the word.  Then the second largest 
number (3) moves one spot from right to left, and then the largest number moves from left to 
right until it gets to its final position - at the right end of the word - and then the second largest 
number moves one spot from right to left again, and so on until the second largest number gets to 
its final position, which is not at the left end of the word but just to the right of the largest number 
– a number isn't allowed to swap with a bigger number.  Now both the largest and the second 
largest number are in their final positions; so the third largest number (2) moves one spot from 
right to left and the two largest numbers change direction.  This continues until it is the turn of 
the smallest number 1 to move, which would turn the permutation into the first one again; so the 
generation stops.  I leave it to you to write a pseudocode for generating this Gray code. 
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 There are several Gray codes for Dyck words.  The descriptions of these Gray codes are 
too complicated to be given here; I'll just describe the properties of three of them and give 
references.  In all of these Gray codes, one Dyck word is transformed into its successor by 
changing a single 1 to a 0 and a single 0 to a 1.  In the first of these to be published [Ruskey, F., 
Proskurowski, A.: Generating Binary Trees by Transpositions. J. Algorithms 11 (1990) 68-84], 
there could be an arbitrary number of bits including some 1s between the 1 and the 0 that change.  
In the next one [Bultena, B., Ruskey, F.: An Eades-McKay Algorithm for Well-Formed 
Parentheses Strings. Inform. Process. Lett. 68 (1998), no. 5, 255-259] there could be an arbitrary 
number of bits between the 1 and the 0 that change, but each of these bits must be 0.  And in the 
third one [V. Vajnovszki and T.R. Walsh, A loopless two-close Gray-code algorithm for listing 
k-ary Dyck words, Journal of Discrete Algorithms, Vol. 4, No. 4 (2006) 633-648] there can be at 
most one bit between the 1 and the 0 that change and that bit must be 0. 
 
 Notice the word "loopless" in the title of that last reference.  That means that each word is 
transformed into its successor in O(1) time even in the worst case.  This term and the method for 
designing such an algorithm was invented by Gideon Ehrlich [G. Ehrlich, Loopless algorithms 
for generating permutations, combinations, and other combinatorial configurations, J. ACM 20 
(1973), p. 500-513].  Other researchers then jumped on the bandwagon to design loopless 
algorithms for other sets of combinatorial algorithms, including some colleagues of Ehrlich 
[James R. Bitner, Gideon Ehrlich, Edward M. Reingold: Efficient Generation of the Binary 
Reflected Gray Code and Its Applications. Commun. ACM 19(9): 517-521 (1976)], Stanley Gill 
Williamson [S.G. Williamson, Combinatorics for computer science, Computer Science Press, 
Rockville, 1985] and, of course, me.  I did it for the Ruskey-Proskurowski Gray code [T.R. 
Walsh, Generation of well-formed parenthesis strings in constant worst-case time, The Journal of 
Algorithms 29, 1998, 165-173] and the one discovered by Vincent Vajnovski (see the reference 
above with his name and mine).  Professor Vajnovski invited me to come to Besançon to work 
with him, which I was only too glad to do.  After our work was done, I still had some time before 
having to use my return ticket from Paris to Montreal; so I was able to spend a few days and 
nights in Paris, sightseeing during the day and taking in Paris' night life each evening – by 
attending a concert of classical music.  Since my trip was subsidized by both my research grant 
and Prof. Vajnovski's university, this was another use I managed to make of Gray codes. 
 
 I also discovered a couple of Gray codes of my own.  In one case, Ehrich's original 
method worked [T.R. Walsh, Gray codes for involutions, The Journal of Combinatorial 
Mathematics and Combinatorial Computing 36, 2001, 95-118]; in the other I had to modify it to 
make it work [T.R. Walsh, Loop-free sequencing of bounded integer compositions, The Journal 
of Combinatorial Mathematics and Combinatorial Computing 33, 2000, 323-345].  This latter 
article illustrates yet another use I made of Gray codes.  While working on my M. Sc. I got 
interested in finding f(n,r), the number of length-n permutations with r inversions.  There was 
already a recursive definition of f(n,r), but I wanted to find a non-recursive formula.  The one I 
finally found was so complicated that it was less efficient than the recurrence; so the article I 
submitted was condemned, derided and dismissed by both referees.  But I was determined to 
claim authorship of this result, and 35 years later I finally got the chance.  I applied a special case 
of my Gray code for bounded integer compositions to design a Gray code for permutations with a 
given number of inversions.  Having thus introduced the subject, I slipped my monstrous formula 
into my article, and fortunately the referees did not insist that I remove it.  And so it was that I 
used Gray codes to claim authorship of an unpublishable discovery. 
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CHAPTER 11. NP-COMPLETE PROBLEMS 
 
 Unlike the previous chapters, this last chapter is not intended to be self-contained.  That 
would make it too long for its purpose, which is to amuse you with an article I published in The 
Mathematical Intelligencer.  Any notion not contained in this chapter can be found in the book 
[Alfred V. Aho, J.E. Hopcroft, Jeffrey D. Ullman, The Design and Analysis of Computer 
Algorithms, Addison-Wesley Series in Computer Science and Information Processing (1974)], 
referred to henceforth as AHU.  Here I intend to give you enough of the flavour of the subject 
that you will be able to appreciate the article. 
 
 The sort of problems we will be dealing with here are called decision problems – 
problems to which the solution is either the answer "yes" or the answer "no".  An example of 
such a problem is the knapsack problem.  Given an array of k integers (m1,m2,...,mk) and another 
integer S, is there a subarray of these integers whose sum is S?  Suppose that the array is 
(1,3,6,10).  If S = 10, then the answer to that instance of the problem is "yes"; if S = 8, then the 
answer to this instance of the problem is "no". 
 

The P in NP-COMPLETE (the P in NP, not the P in COMPLETE) stands for polynomial.  
Here we will not be concerned with whether an algorithm runs in O( n2) or O( n3) time.  All we 
want to know is whether the time in which it runs is bounded by some polynomial P(n).  A 
problem is said to be in the class P if there is a polynomial P and an algorithm that, for any 
instance of the problem, correctly decides whether the answer to this instance of the problem is 
yes or no in a time bounded by P(n), where n is the size of an efficient representation of this 
instance of the problem. 

 
Why was it necessary to add the condition that the representation has to be efficient?  

There is an obvious algorithm for solving the knapsack problem that runs in O((n + k)2), where n 
is the sum of the absolute values of all the k integers.  Take an array A[-n..n] of Boolean and 
initialize it to 0 everywhere except that A[0] = 1.  Then execute the following algorithm: 

 
for i←1 to k do 
    for j←max(-n,-n-mi) to min(n,n-mi) do 
        if A[i] = 1 then A[i+mi]←1 end if; 
    end for j; 
end for i. 
 
 This algorithm will put a 1 in each A[i] such that there is some sub-array of integers 
whose sum is i.  We trace this algorithm for the array (1,3,6,10).  Since all the integers in this 
array are positive, we can make the array A start at 0 instead of –20. 
 
 j= 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
A[j]1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
i=1:1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
i=2:1  1  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
i=3:1  1  0  1  1  0  1  1  0  1  1  0  0  0  0  0  0  0  0  0  0 
i=4:1  1  0  1  1  0  1  1  0  1  1  1  0  1  1  0  1  1  0  1  1 
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 The number of operations is bounded by k times the array length, which is 2n+1, and 
k(2n+1) ≤ (n + k)2 if k ≥ 1.  Then for any S, if –n ≤ S ≤ n and A[S] = 1, then the answer to that 
instance of the problem is "yes"; otherwise the answer is "no".  
 
 Now you can always represent an instance of the problem so inefficiently that (n + k)2 
will be bounded by a polynomial in the size of the representation.  You represent the integer mi  
by a string of |mi | 1s, preceded by a minus sign if mi  < 0, and followed by a comma.  The total 
length will then be at least n + k, so that the time taken to solve the problem is bounded by the 
square of the input size. 
 
 But if an integer mi  ≠ 0 is represented in binary or decimal, then the number of digits 
needed to represent mi  is not mi  but rather proportional to log(|mi |), where the constant of 
proportionality depends upon whether you're using binary or decimal or some other base.  There 
is no known algorithm for solving the knapsack problem in a time bounded by any polynomial in 
the size of this more efficient representation of the problem; so blowing up the input size to make 
the problem solvable in a time bounded by a polynomial in that over-inflated input size is 
cheating, and it is to prevent this sort of cheating that the condition "efficient" is introduced. 
 
 The N in NP-COMPLETE stands for non-deterministic.  A non-deterministic algorithm is 
allowed to make guesses.  In the knapsack problem, suppose that the array M of integers is 
(1,3,6,10) and S = 10.  A non-deterministic algorithm could run through the array M and, for each 
integer mi  in M, guess whether to include or exclude mi , add up all the integers it includes and 
say "yes" to the input if the sum of all the included integers is equal to S.  If it decides to include 
1, 3 and 6 and exclude 10, or to exclude 1, 3 and 6 and include 10, then the sum of the included 
integers will be equal to S and the algorithm will say "yes".  Such an algorithm runs in 
polynomial time in the size of the input because all the algorithm has to do is to run through the 
array M, include or exclude each of the elements mi  of M and add up the integers it includes.  
There other sequence of guesses for which the sum of the included integers will not be equal to S 
and the algorithm will not say "yes", but the algorithm is said to accept the input if there exists a 
sequence of lucky guesses that allows the algorithm to say "yes" to the input. If S is 8 instead of 
10, then the algorithm cannot say "yes" no matter what sequence of guesses it makes.  A problem 
is said to be in the class NP if there is a non-deterministic algorithm that accepts any "yes" 
instance of the problem in a time bounded by a polynomial in an efficient input size and doesn't 
accept any "no" instance.  Such an algorithm is not required to say "no" to a "no" instance in 
polynomial time.  To say "no" to a "no" instance of the knapsack problem, the algorithm would 
have to try all the 2k possible sequences of guesses and this cannot be done in polynomial time.  
But because there is a non-determininistic algorithm that accepts a "yes" instance of the knapsack 
problem in polynomial time, albeit through a sequence of lucky guesses, and accepts no "no" 
instances, the knapsack problem is in the class NP. 
 
 Another example of a problem in the class NP is the partition problem.  Given an array of 
integers, can this array be partitioned into two sub-arrays such that the sum of the integers in one 
sub-array is equal to the sum of the integers in the other sub-array?  A non-deterministic 
algorithm would run through the array and, for each element, guess whether to put it into the first 
sub-array or the second one, add the elements in each sub-array and say yes to the input if the 
sum of the elements in the first sub-array is equal to the sum of the elements in the second one.  
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For example, suppose the array was (1,2,3,4).  A good sequence of guesses would be to put 1 and 
4 in one sub-array and 2 and 3 in the other one. 
 
 Another example is the exact cover problem.  Given a set S and a family F of subsets of S, 
is there a sub-family of F such that the members of the sub-family are pairwise disjoint and their 
union is equal to S?  A non-deterministic algorithm would run through F and, for each member of 
F, guess whether to include it in the sub-family or exclude it.  Then the algorithm would check 
whether the members of the sub-family are pairwise disjoint and whether their union is equal to S 
and, if so, say yes to the input.  For example, suppose that S={1,2,3,4} and F consists of the 
subsets {1}, {1,2}, {2,3}, {2,4} and {4}.  A good sequence of guesses would be to include {1}, 
{2,3} and {4} in the sub-family and exclude {1,2} and {2,4}. 
 
 Another example of wide interest is the graph colouring problem.  Given a simple 
undirected graph G and a positive integer k, is it possible to colour the vertices of G using at most 
k colours so that no two adjacent vertices get the same colour?  A non-deterministic algorithm 
would guess one of the k colours for each vertex and then check whether any two adjacent 
vertices got the same colour and say yes to the input if not.  For example, if the graph were the 
one drawn below and k = 4, then a good sequence of guesses would be to colour vertices 1 and 3 
red, vertices 2 and 4 blue, vertex 5 yellow and vertex 6 green. 
 
 
  5 
 
 
4                    1 
          6 
 
 
    3           2 
 
 Another example is the satisfiability problem.  A Boolean expression consists of variable 
names, conjunction symbols, disjunction symbols, negation symbols, and enough parentheses to 
make it clear the order in which the operations are to be applied.  An example of a Boolean 
expression is ( p∧¬q∧ r )∨( p∧q∧ r ).  A Boolean expression is said to be satisfiable if there is 
an attribution of truth values (true or false) to each of the variables that gives the expression the 
value true.  Given a Boolean expression, is it satisfiable?  A non-deterministic algorithm would 
guess a truth value for each of the (distinct) variables, evaluate the Boolean expression and say 
"yes" to the input if the Boolean expression turns out to be true.  For the above Boolean 
expression, a good sequence of guesses would be to make p true, q false and r true. 
 
 A special case of the satisfiablility problem is the CNF-satisfiability problem.  A Boolean 
expression is said to be in conjunctive normal form if it consists of the conjunction of Boolean 
expressions called clauses, each of which is the disjunction of variables, each of which may or 
may not be preceded by a negation sign.  The above Boolean expression is not in conjunctive 
normal form, but ( p∨¬q∨ r ∨ s)∧( p∨q∨ r ∨¬s) is.  Given a Boolean expression in conjunctive 
normal form, is it satisfiable?  A non-deterministic algorithm would proceed as it would for an 
arbitrary Boolean expression. 
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 A special case of the CNF-satisfiability is 3-SAT.  Given a Boolean expression in 
conjunctive normal form in which each of the clauses has exactly three variables, is it satisfiable?  
The expression ( p∨¬q∨ r ∨ s)∧( p∨q∨ r ∨¬s) is not an instance of 3-SAT, but the expression 
( p∨¬ q∨ r )∧( p∨q∨ r )∧(q∨ r ∨ s)∧(¬ q∨ r ∨¬s)  is.  A non-deterministic algorithm would 
proceed as it would for an arbitrary Boolean expression. 
 
 It is not surprising that all these problems are in the class NP.  What is perhaps more 
surprising is that none of these problems has been proved to be, or not to be, in the class P.  Even 
more surprising is that either all of them are in the class P or none of them are! 
 
 Suppose you're interested in a problem D and you want to find a polynomial-time 
algorithm to decide whether or not a given instance D, coded efficiently by a string x of n 
symbols, is a "yes" instance or a "no" instance.  If you know of a problem E that is in class P, you 
may be able use problem E to find the desired algorithm.  The trick is to transform each input x of 
D into an input f(x) of E such that f(x) represents a "yes" instance of E if and only if x represents a 
"yes" instance of D.  Suppose you can do the transformation in a time bounded by a polynomial 
p(n).  Then f(x) can't be any longer than p(n) symbols because it takes a transformation step just 
to write a symbol of f(x).  Since E is in class P, there is an algorithm A that decides whether f(x) 
represents a "yes" instance or a "no" instance of E in a time bounded by some polynomial q(p(n)).  
You transform x into f(x) in time p(n), and then you apply the algorithm A that decides in a time 
bounded by q(p(n)) whether f(x) represents a "yes" instance or a "no" instance of E.  If A says 
"yes" to f(x), then you say "yes" to x; if A says "no" to f(x), then you say "no" to x.  You now have 
an algorithm that decides whether x represents a "yes" instance or a "no" instance of D in a time 
bounded by p(n) + q(p(n)), which is a polynomial in n; so D is in class P. 
 
 A polynomial transformation of a problem D into a problem E transforms each "yes" 
instance of D into a "yes" instance of E and each "no" instance of D into a "no" instance of 
E in a time bounded by some polynomial of the length of the input that represents the 
instance of D. 
 
 As an example, here is a polynomial transformation of the knapsack problem into the 
partition problem.  Recall that the knapsack problem asks whether there is a sub-array of the 
array M = (m1,m2,...,mk ) whose sum is equal to a given integer S.  To transform this problem into 
the partition problem, add another element to the array: mk+1 = 2S − (m1 +m2 + ...+mk ).  This 
transformation can be done in polynomial time because two integers can be added in a number of 
operations bounded by the number of digits of the bigger one.  The sum of all the integers in the 
extended array M* = (m1,m2,...,mk ,mk+1) is equal to 2S.  Suppose there is a sub-array of M the 
sum of whose members is S.  This sub-array is also a sub-array of M*, and the sum of the other 
members of M* is also equal to S; so M* has been partitioned into two sub-arrays of equal sum.  
Conversely, suppose that there is a partition of (m1,m2,...,mk ,mk+1) into two sub-arrays of equal 
sum, which must be S because the sum of all the elements of M* is 2S.  Then mk+1 has to belong 
to exactly one of the two sub-arrays.  The other sub-array is a sub-array of M and the sum of its 
elements is equal to S.  To give a more concrete example, the instance (1,3,6,10) with S = 16 of 
the knapsack problem gets transformed into the instance (1,3,6,10,12) of the partition problem.  
The sub-array (6,10), whose elements add to 16, induces the partition of (1,3,6,10,12) into the 
sub-arrays (6,10) and (1,3,12) of equal sum 16. 
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 As a harder example, here is a polynomial transformation of the exact cover problem into 
the knapsack problem.  Let E be the finite set {e1,e2,...,en} and let F be some family of k subsets 
of E.  The exact cover problem asks whether there is a subfamily of F whose members are 
pairwise disjoint and whose union is equal to E.  The trick here is to express each subset of E as a 
non-negative integer in base k+1.  Transform e1 into 1, e2 into (k+1), … , ei  into (k+1)i−1, … 
and en into (k+1)n−1.   Then transform each subset S of E into the sum of the images of the 
elements of S.  For example, the empty set gets transformed into 0, the set {e1,e3,e4} gets 
transformed into 1+(k+1)2+(k+1)3 and E itself gets transformed into 
1+ (k+1)+ (k+1)2 + ...+ (k+1)n−1.  Each member of F, which is a subset of E, gets transformed 
into a non-negative integer, so that F, when its elements are ordered, gets transformed into an 
array of k integers M=(m1,m2,...mk).  Each sub-family f of F gets transformed into a sub-array of 
M.  For example, if f={{ e1, e2},{ e1, e2},{ e1, e3}}, then f is transformed into the array 
(1+(k+1),1+(k+1), 1+(k+1)2), and the sum of the elements of this array is 3 + 2(k+1) + (k+1)2.  
For each sub-family f of F, let s(f) be the sum of the images of the members of f.  The coefficient 
of (k+1)i−1 in s(f) is the number of occurrences of ei  among all the members of f.  Now the 
members of a sub-family f are pairwise disjoint if and only if no element of E occurs more than 
once among the members of f so that no coefficient of a power of k+1 in s(f) is greater than 1.  
Also, the union of the members of f is equal to E if and only if every element of E occurs at least 
once among the members of f so that no coefficient of a power of k+1 in s(f) is less than 1.  It 
follows that f is an exact cover of E if and only if every coefficient of a power of k + 1 in s(f) is 
exactly 1.  Since F has only k members, every sub-family f of F must have at most k members, so 
that the coefficient of each power of k + 1 in s(f) must be at most k.  It follows that the 
coefficients of the powers of k + 1 are uniquely determined by the representation of s(f) in base 
k + 1.  For example, if k = 3, then 3 + 2(k+1) + (k+1)2 = 27 and 27 can be expressed in only one 
way in base 4.  It follows that the coefficient of every power of k + 1 in s(f) is exactly 1 if and 
only if s(f) is equal to the integer 1+ (k+1)+ (k+1)2 + ...+ (k+1)n−1.  This means that there is a 
sub-family f of F whose members are pairwise disjoint and whose union is equal to E if and only 
if there is a sub-array of (m1,m2,...mk), where mj  is the image of the the jth element of F under 
this transformation, whose elements add up to the integer 1+ (k+1)+ (k+1)2 + ...+ (k+1)n−1.  This 
transformation can be done in polynomial time; so it is a polynomial transformation of the exact 
cover problem into the knapsack problem. 
 
 Since there is a polynomial transformation of the exact cover problem into the knapsack 
problem and a polynomial transformation of the knapsack problem into the partition problem, 
there is a polynomial transformation of the exact cover problem into the partition problem.  You 
transform the exact cover problem into the knapsack problem, and the length of the input to the 
knapsack problem will be bounded by a polynomial in the length of the input to the exact cover 
problem.  Then you transform the knapsack problem into the partition problem.  The time taken 
will be bounded by a polynomial in the length of the input to the knapsack problem, which, in 
turn, is bounded by a polynomial in the length of the input to the exact cover problem; so the time 
taken by the pair of transformations is bounded by a polynomial in the length of the input into the 
exact cover problem.  In general, if there is a polynomial transformation from problem A into 
problem B and a polynomial transformation of problem B into problem C, then there is a 
polynomial transformation from problem A into problem C. 
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 In 1971 Stephen Cook published a proof that for any problem A in the class NP there is a 
polynomial transformation from problem A into the CNF-satisfiability problem.  His proof uses a 
Turing machine, as does any satisfactory proof I've ever seen.  Reproducing this proof here 
would over-inflate the length of this monograph; if you're interested, you can find it in AHU.  A 
problem B is said to be NP-hard if for every problem A in the class NP there is a polynomial 
transformation from problem A into problem B.   If, in addition, problem B is in the class NP, 
then it is said to be NP-complete.  This is what the word COMPLETE means in the title of this 
chapter.  What Cook proved is that CNF-satisfiability is NP-complete. 
 
 A polynomial transformation from CNF-satisfiability to 3-SAT appears in AHU.  Since 
there is a polynomial transformation from any problem in the class NP into CNF-satisfiability 
and there is a polynomial transformation from CNF-satisfiability into 3-SAT, there is a 
polynomial transformation from any problem in the class NP into 3-SAT; so 3-SAT is NP-hard, 
and since it is in the class NP, it is NP-complete.  In general, the way to prove that a problem D is 
NP-hard is to find a polynomial transformation from a problem H, which has already been proved 
to be NP-hard, into the problem D.  In AHU there are polynomial transformations from 3-SAT 
into the graph-colouring problem and from the graph-colouring problem into the exact cover 
problem.  In this monograph there are polynomial transformations from the exact cover problem 
into the knapsack problem and from the knapsack problem into the partition problem (I take 
credit for neither of these transformations – the latter one was found by a student taking a 
graduate course from me).  It follows that all these problems are NP-hard and, since they're all in 
the class NP, they are all NP-complete. 
 
 By now there are hundreds of problems that have been shown to be NP-complete.  If any 
of these problems, say problem E, were also in the class P, then any problem in the class NP, say 
problem H, would also be in the class P, because there is a polynomial transformation from any 
problem, including H, in the class NP into an NP-complete problem, including E, and by 
combining this transformation with a polynomial-time algorithm that solves problem E you'd get 
a polynomial-time algorithm that solves problem H.  It follows that there are only two 
possibilities: either all the NP-complete problems can be solved in polynomial time or none 
of them can be.  Now, among these hundreds of NP-complete problems are many on which 
some very bright people have been working for a very long time, and none of them has found a 
polynomial-time algorithm to solve their pet problem.  If all of these problems had polynomial-
time algorithms, it would be rather unlikely that all of these brilliant researchers would have 
missed them; so most people who work in the field think that none of the NP-complete problems 
are in the class P.  But an argument based on the intelligence of the researchers who have failed 
to find polynomial-time algorithms for their favrourite problems is not a proof that no such 
algorithm exists.  This is the fundamental unsolved problem of theoretical computer science: is 
P = NP or not?  If you solve it, you will no doubt earn a Fields Medal.  On the other hand, if you 
attempt to solve it, you'd better do other research as well; otherwise you may end up having to 
work beneath your qualifications like the mathematicians André, Gilbert and Pierre who ended 
up as menial labourers in a booze factory. 
 
 While teaching a course in algorithm analysis using AHU as a text, I thought of a story 
that I could use to illustrate the polynomial transformations from CNF-satisfiability right through 
to the partition problem.  I submitted it to The Mathematical Intelligencer, and the editor-in-chief 
Prof. Chandler Davis, an old friend of mine, accepted it (he suggested the title).  Throughout this 
monograph I have been trying to combat the contempt that some computer types have for 
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mathematics.  This story, on the other hand, makes fun of mathematicians who have contempt for 
computer science. 
 
 

Completely Non-Plussed 
 

by Timothy Walsh 
 

This story appeared in The Mathematical Intelligencer 9, #4 (1997), p77. 
 

Once upon a time (in 1971), an Associate Professor of Mathematics went to his Chairman 
(the only Full Professor in the Department) and demanded a promotion.  The Chairman handed 
him a book the size of a Toronto telephone directory, entitled "Conditions for Promotion to Full 
Professor".  Being an algebraist specializing in Boolean Algebras, the Associate Professor not 
only wrote the Conditions as a Boolean expression but also put it into Conjunctive Normal Form.  
He hoped to be able to determine which of the thousands of variables must be assigned the value 
TRUE in order to satisfy the Conditions, or else to prove that no such assignment is possible.  In 
the latter case he could threaten to show up the Chairman as a fraud and then trade his silence for 
the desired promotion.  But he soon calculated that even a supercomputer would have to work 
longer than the expected lifetime of the the universe to decide whether that expression is 
satisfiable by trying all possible assignments of truth values to the variables; so he set out to find 
a more efficient algorithm. 

 
Now in those days mathematicians tended to scorn anything as dirty as Computer Science; 

their idea of an efficient algorithm was one that ran faster on the computer (if indeed they knew 
how to program) than the other algorithm they knew.  In his case, the efficient algorithm first 
transformed the Boolean expression into one in which each clause contains exactly three 
variables.  But even the efficient algorithm proved unequal to the task; so our Associate Professor 
thought: "Well, perhaps if I transformed the problem into a simpler one ...".  Day and night he 
worked, neglecting both teaching and research, until he found a graph that has a proper colouring 
in a certain number of colours if (and only if) his Boolean expression can be satisfied. 

 
Our Associate Professor did not realize it, but he had just proved that 3-SAT and the graph-

colouring problem are NP-complete.  But instead of using this result to further his case for 
promotion, he rushed out of his office and down the hall to the office of an Assistant Professor, a 
graph theorist. 

 
"I have an interesting problem for you," panted the Associate Professor, unrolling the 

wallpaper on which he had drawn his graph.  "Can this graph be coloured in 3124 colours?  I 
know you're coming up for tenure soon, and I'm on the Tenure Committee.  Solve this problem 
for me, and I'll see to it that you get in." 

 
The Assistant Professor tried the two graph-colouring algorithms he knew and found them 

both wanting; so he too decided to transform his problem into a simpler one.  Several student 
complaints later, he came up with a set and a family of subsets such that some pairwise-disjoint 
subfamily can cover the original set if and only if the graph has the desired colouring.  But 
instead of backing up his tenure application with his NP-completeness proof of the exact cover 
problem, he promised his graduate student, a set theorist, an M.Sc. for covering his set. 
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The graduate student didn't know how to program a computer, but he had learned from 

masters how to tackle problems he couldn't solve himself: transform them and give them to 
someone lower on the hierarchy than you, a procedure made possible by his position as an 
Instructor.  While stacks of assignments lay unmarked on his desk, he laboured mightily until he 
found a sequence of integers that has a subsequence adding up to a certain number if and only if 
his set has an exact cover.  But instead of writing up his proof of the NP-completeness of the 
knapsack problem as an M. Sc. thesis, he presented his problem to his class, promising a mark of 
100% in the course to the first student to solve it. 

 
The brightest student in his class took up the challenge.  Instead of studying for his exams, 

he transformed the sequence into another one that can be partitioned into two equal-sum 
subsequences if the original sequence has the required subsequence, and gave his new sequence 
to his girlfriend, promising her just about anything if she would write a program to partition it.  
After all, he reasoned, his girlfriend is a Computer Science student, and what are Computer 
Science students good for besides writing programs? 

 
"Where did you get these numbers?" she asked.  His male ego swelling, he showed her the 

numbers he had been given and the transformation he had discovered.  "And who gave you those 
numbers?" she asked.  On being told the name of his Instructor, she said, "Well, I'll get to work 
on it.  See you around!" 
 

Following the leads, she went from Instructor to Assistant Professor to Associate Professor, 
coaxing a transformation out of each of them and tracing the partition problem all the way back 
to CNF-satisfiability.  Since she attended Computer Science seminars, she knew that the CNF-
satisfiability problem had just been proved to be NP-complete, so that the transformations she 
had been given constituted NP-completeness proofs of the 3-SAT, graph-colouring, exact cover, 
knapsack and partition problems.  As soon as her final exams were over, she wrote up these 
proofs in a paper, thanking all four mathematicians "for their invaluable assistance".  She was 
confident that they wouldn't dare challenge the originality of her results even if they did happen 
to find out about them from someone who reads Computer Science literature lest they admit 
having missed the significance of the transformations they had unwittingly given her.  And upon 
entering Graduate School the following year she presented her results as an M. Sc. thesis, thus 
achieving the distinction of being the first student in the history of that Computer Science 
Department to obtain an M. Sc. before running out of funds. 


