
 104

CHAPTER 9. RELATIONS

 Recall that a function f from the domain D to the codomain C associates to each element
x∈D exactly one element y = f(x)∈C. If instead we allow each element x∈D to be associated to
any number of elements in C, then we have a generalization of a function called a relation, as
illustrated by the diagram below.

 a b c

 1 a 1 1 0

 2 b 0 1 1

 3 c 0 0 1

 4 0 0 0

 D R C MR

 Each arrow in the above diagram represents an ordered pair (x,y), where x∈D and y∈C.
The set of all the ordered pairs (x,y) such that x∈D and y∈C is the cartesian product D×C. In a
relation, each of the ordered pairs (x,y) in D×C can be present or absent; so a relation R from the
domain D to the codomain C is a subset of D×C. Recall that in Chapter 3 we defined what a
function does. We can now define what a function is: a function f from the domain D to the
codomain C is a relation from D to C such that for each x in D there is exactly one ordered pair
(x,y) in f.

 If D and C are finite, then a relation R from D to C can be represented by a graph or by a
matrix MR, which has one row for every element of D and one column for every element of C.
The element MR[x,y] is equal to 1 if (x,y)∈R or 0 otherwise, as illustrated above.

9.1 Operations on relations

 Since a relation is a set, the usual set operations can be done on them. If R and S have the
same domain D and codomain C, then so do the relations R∪S , R∩S , R⊕ S , R− S and R .
The matrix of each of these relations can be found from MR and MS in the obvious way. For
instance, for every x∈D and every y∈C, MR∩S[x,y]=1 if MR[x,y]=1 and MS[x,y]=1; otherwise
MR∩S[x,y]=0. I leave it to you to find a formula for each of the matrices of the other relations
obtained by applying set operations to R and S and to verify your formulae (and the one given
here for set intersection) on some examples.

 Recall that the inverse of a bijective function f :D→C is a function f −1 :C → D defined
by saying that for every y in C, f −1(y) is equal to the unique x in D such that f(x) = y. That is, if f

 1

 2

 3

 4

 a

 b

 c

 105

sends x into y, then f −1 sends y into x. The inverse of a relation can be defined similarly except
that no restriction has to be made on the sort of relation that can have an inverse. The inverse of
a relation R : D→C is the relation R−1 :C → D such that for every y∈C and every x∈D,
(y,x)∈ R−1 if and only if (x,y)∈R. It will sometimes be convenient to write xRy instead of
(x,y)∈R. In this notation, yR−1x if and only if xRy. The diagram below shows the inverse of the
relation shown in the diagram above and the matrix of this inverse relation.

 a 1 a | 1 0 0 0

 b 2 b | 1 1 0 0

 c 3 c | 0 1 1 0

 4

 C R−1 D MR−1=(MR)T

 The matrix of R−1 is not the inverse of MR. It is the transpose of M R, obtained from
MR by exchanging the rows and columns, because a row of MR represents an element x∈D, a
column of MR represents an element y∈C, and R−1 is obtained from R by exchanging x and y.

 Recall that the composition of the function g:A→B by the function f :B→C is the
function f og:A→C defined by the proposition that for every element x in A, if g(x) = y and
f(y) = z, then (f og)(x) = z. That is, if g sends x into y and f sends y into z, then f og sends x into z.
The composition of a relation S by a relation R can be defined similarly except that in general
there is no guarantee that S is going to send x into anything; so we instead insist that there be at
least one y in B such that S sends x into y and R sends y into z. More formally, if S is a relation
from A to B and R is a relation from B to C, then R oS is the relation from A to C such that for
every x∈A and every z∈C, xR oSz if and only if there exists some y in B such that xSy and yRx.

 The composition of one relation by another can be illustrated by the following model.
Each of the sets A, B and C is represented by a set of rocks sticking up above the surface of a
river. A frog is sitting on one of the rocks x in A and a fly is sitting on one of the rocks z in C.
The frog, of course, wants to eat the fly, but if it jumps into the river it will make noise, scaring
the fly away; so it has to hop from its own rock x to the fly's rock z. It can't hop from one rock to
another in the same set or from any rock in A to any rock in C, but it can hop from rock x in A to
rock y in B if xSy and it can hop from rock y in B to rock z in C if yRz. Then xR oSz if the frog
can hop from x to z in two hops, the first one from x to some rock y in B and the second one from
y to z. Below we show two relations, the composition of one by the other and the matrices of all
three relations.

 a

 b

 c

 1

 2

 3

 4

 106

 1
 1 1 1 1
 2
 2 2
 3
 3 2 3 2
 4

 A S B R C A R oS C

 1 1 0 0 1 0 1 0
 0 0 1 0 1 0 1 0
 0 0 0 0 1 0 0 0
 1 1

 If the frog is on 1 and the fly is on 1, then there are 2 ways the frog can catch the fly: via
the rock 1 in B and via the rock 2 in B. If the fly is on 2, then the frog can't catch the fly because
it can't hop to 2 in C from either of the rocks 1 and 2 in B it can hop to. If the frog is on 2 and the
fly is on 1, then there is 1 way the frog can catch the fly: via the rock 3 in B. If the fly is on 2,
then the frog can't catch the fly because it can't hop to 2 in C from the one rock 3 in B it can hop
to. If the frog is on 3, then it can't catch the fly no matter which rock the fly is on, because the
frog can't hop anywhere from where it is.

 How could we evaluate MRoS from MR and MS without drawing pictures? Suppose the
frog is on rock x in A and the fly is on rock z in C. The frog can catch the fly if there is a rock y
in B such xSy and yRz. Now xSy if MS[x,y] = 1 and yRz if MR[y,z] = 1; so rock y is useful for
the frog if MS[x,y] = 1∧MR[y,z] = 1. The frog can catch the fly if MS[x,y] = 1 ∧MR[y,z] = 1
for at least one y in B – that is, if the disjunction over all y in B of the conjunctions
MS[x,y] = 1 ∧MR[y,z] = 1 is equal to 1. To calculate this disjunction, the algorithm given in
some elementary texts runs all the way through row x of MS and column z of MR, evaluating all
the conjunctions and updating their disjunction. This is what you do when you multiply two
matrices, except that here you replace addition by disjunction and multiplication by conjunction.
The essential difference is that here 1 + 1 = 1 instead of 2. If you multiplied these two matrices
the usual way, you would calculate the number of ways in which the frog could catch the fly,
whereas with this sort of multiplication you are determining whether there is at least one way for
the frog to catch the fly. The product you get is called the Boolean product, denoted by
MR ⊗MR .

 But the average frog is smarter than such an algorithm. If in the above example the frog
is on rock 1 in A and the fly is on rock 1 in C, then after looking at rock 1 in B, the frog knows
that it can catch the fly. It isn't going to take the time to look at any of the other rocks in B to
determine whether there is more than one way to catch the fly, because the fly may not stick
around long enough. As soon as the frog finds a way to get to the fly, it will hop to it. A smart
algorithm, or at least a smart algorithm designer, should be able to simulate the decision-making

 1

 2

 3

1

 2

 3

 4

 1

 2

 1

 2

 3

1

2

 107
capability of a smart frog and should set MRoS[x,z] equal to 1 as soon as a y is found such that
MS[x,y] = 1 andMR[y,z] = 1. Can you?

9.2 Relations on a set and their properties

 A relation R on a set S is a relation from S to S. Since the domain and the codomain of R
are the same, it isn't necessary to draw two copies of it. The graph of R will have S as its set of
vertices and there will be an arc (x,y) if and only if xRy. Such a graph will be a directed graph in
which loops are allowed but not multiple arcs; so it will be called a directed graph with no other
adjectives in our notation. The matrix of this graph is just MR (see the diagram below). This
method of representing a relation is more economical than drawing two copies of S, but to find
R oR it may be easier to draw 3 copies of S rather than look for paths of length 2 in the graph
drawn with only one copy of S (try it both ways and decide for yourself).

 1 2 1 1 1 1
 0 0 0 1
 0 0 0 0
 0 0 0 0

 3 4

 A relation R on a set S is called reflexive if xRx for every x in S and irreflexive if xRx for
no x in S. For example, on the set of real numbers, the relation ≥ is reflexive because x ≥ x for
every real number x, the relation > is irreflexive because no number is greater than itself, and the
relation y ≥ x2 is neither reflexive nor irreflexive because 1/2 ≥ (1/ 2)2 but 2 < 22.

 In the diagrams below, the relation on the left is reflexive, the one on the right is
irreflexive and the one in the middle is neither reflexive nor irreflexive.

1 2 1 2 1 2

 3 4 3 4 3 4

 1 1 1 1 1 1 1 1 0 1 1 1
 0 1 0 1 0 0 0 1 0 0 0 1
 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0

 108
 From the graphs and the matrices above it is clear that a relation is reflexive if and only if
the graph has a loop at every vertex and the matrix has a 1 in every place in the principal
diagonal (the one from the top left corner to the bottom right corner) and a relation is irreflexive
if and only if the graph has no loops and the matrix has a 0 in every place in the principal
diagonal. For the graph of a reflexive relation, the forbidden configuration is a a vertex without a
loop (here a dashed line or curve indicates the absence of an arc) o

and for the graph of an irreflexive relation, the forbidden configuration is a loop. o

 It takes O(n) operations to determine whether a relation R on a set S with n elements is
reflexive or irreflexive or neither – you test the n elements on the principal diagonal of MR.

 A relation R on a set S is called symmetric if for every x and y in S, xRy↔yRx. For
example, the relation that a line is parallel to another line is symmetric, and so is the relation that
they are perpendicular. A relation R on a set S is called asymmetric if xRy and yRx cannot both
be true for any x and y in S. For example, the relation > is asymmetric because there is no pair
x,y such that x > y and y > x. The relation ≥ is not asymmetric because x ≥ y and y ≥ x can both be
true if x = y. A relation R on a set S is called antisymmetric if xRy and yRx cannot both be true
for any distinct x and y in S. Another way of stating this condition is that if xRy and yRx, then
x = y. The relation ≥ is antisymmetric and so is the relation that x divides y on the set of positive
integers because if x and y are positive integers and x divides y, then x ≤ y, but this relation is
neither symmetric nor antisymmetric on the set of non-zero integers because 1 divides -1 and -1
divides 1 but 1 and -1 are distinct. The relation = is both symmetric and antisymmetric: if x = y,
then y = x, and if x = y and y = x, then x = y. Conversely, any relation that is both symmetric and
antisymmetric is contained in the relation of equality: if xRy, then yRx by symmetry, so that x = y
by antisymmetry. The only relation on any set that is symmetric, antisymmetric and reflexive is
the relation of equality: if xRy, then x = y by symmetry and antisymmetry, and if x = y, then xRy
by reflexivity, so that xRy if and only if x = y.

 In the diagrams below, the relation on the left is symmetric, the relation on the right is
asymmetric and the relation in the middle is antisymmetric but not asymmetric.

 1 2 1 2 1 2

 3 4 3 4 3 4

 0 1 1 0 0 1 0 0 0 1 0 0
 1 1 0 1 0 1 0 1 0 0 0 1
 1 0 0 0 1 0 0 0 1 0 0 0
 0 1 0 0 0 0 0 0 0 0 0 0

 109
 In the diagrams below, the relation on the left is neither symmetric nor anti-symmetric,
the one on the right is symmetric and antisymmetric and reflexive and the one in the middle is
symmetric and antisymmetric but not reflexive.

 1 2 1 2 1 2

 3 4 3 4 3 4

 0 1 1 0 0 0 0 0 1 0 0 0
 1 1 0 0 0 1 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 1 0
 0 1 0 0 0 0 0 0 0 0 0 1

 From the graphs and matrices above we can deduce the following tests for these
properties. A relation is symmetric if and only if for every non-loop arc (x,y) in the graph there is
a return arc (y,x) and the matrix is symmetric: every element not on the principal diagonal sees an
element equal to itself when it uses the principal diagonal as a mirror. The forbidden
configuration for a symmetric relation is an arc without a return arc:

o o .

 The forbidden configuration for an antisymmetric relation is an arc with a return arc:

o o.

A relation is asymmetric if and only if it is both antisymmetric and irreflexive; so it has
two forbidden configurations: an arc with a return arc and a loop. To test a relation on a set S
with n elements for symmetry or antisymmetry you check the off-diagonal elements to see
whether a 1 sees a 1 in the mirror (if so, no antisymmetry) or a 1 sees a 0 (if so, no symmetry)
and to test for asymmetry you check the diagonal elements too; so these tests take O(n2)
operations.

 A relation R on a set S is called transitive if for all x, y and z in S, if xRy and yRz, then
xRz. An example of a transitive relation is >: if a cow is bigger than a dog and the dog is bigger
than a mouse, then the cow is (much) bigger than the mouse. It's funnier in French: si une vache
est plus grande qu'un chien et le chien est plus grand qu'une souris, alors la vache est vachement
plus grande que la souris. Other transitive relations: one integer divides another, one set is a
subset of another, one function is an estimate of another (you prove that one). The relation that a
line on a plane is perpendicular to another line on the same plane is not transitive: if line x is
perpendicular to line y and line y is perpendicular to line z, then line x is parallel to line z.

 110
 The relation drawn in the first diagram in this section is transitive and so are the three
relations drawn just below it – the left one is the relation that one of the integers 1,2,3,4 divides
another. Of the three relations shown below, the left one and the middle one are not transitive but
the right one is.

 1 2 1 2 1 2

 3 4 3 4 3 4

 0 1 0 0 0 1 0 0 0 1 0 0
 0 0 0 1 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

 The first one isn't transitive because 1R2 and 2R4 but 1R4 is false. The second one isn't
transitive because 1R2 and 2R1 but 1R1 is false (also, 2R1 and 1R2 but 2R2 is false). In the
proposition that if xRy and yRz then xRz, set z = x; then it becomes the proposition that if xRy and
yRx, then xRx. For transitivity there are two forbidden configurations: two consecutive arcs
without an arc from the initial vertex to the terminal one and an arc with a return arc but without
a loop at both incident vertices.

 o o o o o

 Note that setting y = x does not add any more configurations because if xRx and xRz then
xRz for any relation, and the same holds true for setting y = z; so these are the only two forbidden
configurations. The relation on the right has neither of these two configurations; so it is
transitive. For all x, y, z, the proposition that xRy∧yRz is false; so the implication that
(xRy∧ yRz)→ xRz is true whether or not xRz is true.

 How would you test a relation R for transitivity using the matrix MR? You could, of
course, test, for every triple (x,y,z), whether MR[x,y] = 1 and MR[y,z] = 1 but MR[x,z] = 0,
but, like the smart frog, you want to stop once you know the answer. Here is an algorithm that
does so.

 111

boolean function Transitive(n: natural; M: array[1..n][1..n] of boolean)

{boolean means true or false}
{Transitive[n,M] = true if the relation whose matrix is M is transitive and false otherwise.}

 local variables x, y, z: natural;
 for x←1 to n do
 for z←1 to n do
 if M[x,z] = 0 then
 for y←1 to n do
 if M[x,y]=1 and M[y,z]=1 then return false end if;
 end for y;
 end if;
 end for z;
 end for x;
 return true;
end transitive.

 In the worst case this algorithm does O(n3) operations because there are 3 nested loops,
each doing n iterations. Is this a good estimate? Suppose that M[x,z] = 0 for all x and z. Then
the inner loop will get iterated n3 times; so in this case the algorithm is neither better nor worse
than testing every triple, but in any other case, some time will be saved.

 If M[x,z] = 0, the inner loop calculates (M ⊗M)[x,z] using the smart-frog approach and
declares the relation not to be transitive if (M ⊗M)[x,z] = 1; if this never happens, the algorithm
declares the relation to be transitive. Its correctness is based on the following theorem (you prove
it).

A relation R on a finite set S is transitive if and only if for each x and z in S,
(MR ⊗MR)[x,z] = 1→ MR[x,z] = 1.

9.3 Equivalence relations

 A relation R on a set S is called an equivalence relation if it is reflexive, symmetric and
transitive. For each element x∈S, the set {y∈S: xRy} of elements y of S such that x is related to
y is called the class of x under R and is denoted by [x]R , or just [x] if only one relation is being
discussed.

 Example 1. The most obvious equivalence relation, and the one responsible for the name
equivalence, is the relation of equality on any set. For this relation, [x]={x} for any x.

 Example 2. The relation R on the set of real numbers defined by xRy iff either x = y or
x = -y is an equivalence relation. Since x = x for any x, R is reflexive. If x = y, then y = x, and if
x = -y, then y = -x; so R is symmeteric. Suppose that xRy and yRz. Then there are four
possibilities. If x = y and y = z, then x = z. If x = y and y = -z, then x = -z. If x = -y and y = z, then
x = -z. Finally, if x = -y and y = -z, then x = z. In each of those cases xRz ; so R is transitive.
Under this relation, [0] = {0} and [x] = [-x] = {x,-x} for every real number x ≠ 0.

 112
 Example 3. Let S be the set of lines on a plane and R be the relation on S defined by xRy
if x is parallel to y – that is, x and y do not have a single point of intersection. According to this
definition, any line is parallel to itself; so R is reflexive. The expression "x and y" is the same as
"y and x"; so R is symmetric. To prove that R is transitive, we use a theorem of Euclidean
geometry that says that two lines are parallel if and only if they make the same angle with a
transversal (another line parallel to neither of them). From the diagram below the reader should
be able to derive a proof of the transitivity of R.

 x y z

 θ θ θ

 Under this relation, [x] is the set of lines that are parallel to x; by the above theorem, [x] is
the set of lines making the same angle as x with a transversal.

 Example 4. Let R be the relation on any set S defined by xRy for all x and y in S. This is
(trivially) an equivalence relation and [x] = S for all x.

 Example 5. Let S be the set of integers and m an integer greater than 1, and let R be the
relation on S defined by xRy if m divides x - y. Since m divides x – x = 0, R is reflexive. If m
divides x - y, then m divides y - x = -(x-y); so R is symmetric. If m divides both x - y and y - z,
then m divides x - z = (x-y) + (y-z); so R is transitive. Under this relation, [x] is the set of integers
y such that m divides x - y so that y = x + km for some integer k. For m = 5 we have the following
equivalence classes:

[0] = {…, -15, -10, -5, 0, 5, 10, 15, …}
[1] = {…, -14, -9, -4, 1, 6, 11, 16, …}
[2] = {…, -13, -8, -3, 2, 7, 12, 17, …}
[3] = {…, -12, -7, -2, 3, 8, 13, 18, …}
[4] = {…, -11, -6, -1, 4, 9, 14, 19, …}.

 Note that [5] = [0], [6] = [1] and so on, so that the 5 classes [0],…,[4] cover S.

 In each of those five examples, the equivalence classes are non-empty, they cover S (their
union is equal to S) and any two distinct classes are disjoint. Is this a coincidence or is this a
property common to all equivalence relations?

 Theorem. Let R be an equivalence relation on any set S. Then the equivalence
classes under R have the following properties:

1) every equivalence class is non-empty;
2) every element of S is in some equivalence class;
3) any two distinct equivalence classes are disjoint, so that no element of S is in more than

one equivalence class.

 113

Proof. To prove properties 1 and 2, we use the fact that R is reflexive – that is, xRx for
any x in S – so x∈[x]. It follows that [x] is not empty because it contains at least the element x
(property 1) and that x belongs to at least the equivalence class [x] (property 2).

To prove property 3 we use the fact that R is symmetric and transitive. We prove the

contrapositive of property 3: if [x] and [y] are not disjoint, then they are equal (as sets). Suppose
that [x] and [y] are not disjoint, so that there is an element z of S in both [x] and [y]. Then xRz
and yRz. To show that [x]⊆[y], we need to show that if u is any element of [x], then u∈[y] – that
is, if xRu, then yRu. In the leftmost diagram below, we show the facts we already know: xRz, yRz
and xRu. Since xRz and R is symmetric, zRx (see the second diagram below). Since yRz and zRx
and R is transitive, yRx (see the third diagram). Finally, since yRx and xRu and R is transitive,
yRu (see the last diagram).

 z z z z

x y x y x y x y

 by symmetry by transitivity by transitivity

 u u u u

This proves that [x]⊆[y]. To prove that [x] = [y] we need to prove that [y]⊆[x]. To do
this, we repeat the proof that [x]⊆[y], replacing each occurrence of x by y and each occurrence of
y by x. Once you do this, you will be entitled to write QED.

Suppose we choose one representative of each family of identical equivalence classes.

Then we have a set P of non-empty subsets of S that are pairwise disjoint and whose union
covers S, so that each element of S belongs to exactly one member of P. The set P is called a
partition of S and the members of P are called the parts of S. The above theorem says that the
distinct representatives of the equivalences classes of an equivalence relation R on a set S
constitute a partition of S.

Conversely, suppose we have a partition P of a set S. Since each element of S belongs to

exactly one member of P, for each x in S we can define uniquely the part of S to which x belongs.
Now let R be the relation on S defined by xRy if x belongs to the same part of S as y. Since x
belongs to the same part as x, R is reflexive. If x belongs to the same part as y, then y belongs to
the same part as x; so R is symmetric. If x belongs to the same part as y and y belongs to the
same part as z, then x belongs to the same part as z; so R is transitive. Thus R is an equivalence
relation, and for each x in S, [x] is the part of S to which x belongs. We have just proved the
converse of the previous theorem: a partition P of a set S defines an equivalence relation
whose equivalence classes are the parts of S under the partition P.

In the diagram below, S is an Easter egg that has been coloured by a child. Each region of

the egg has been coloured a different colour. The regions are not empty, every bit of the surface

 114
of the egg has been coloured, and no part has been coloured with more than one colour; so the
regions constitute a partition of the surface of the egg. By examining this egg and the location of
x, y and z on its surface, you should be able to understand the above proof.

 x y z

 The following theorem is related to the previous one and could be proved from it as a
corollary.

 Theorem. Let R be a relation on a set S. Suppose there is a function f from S to some set
such that f(x) = f(y) if and only if xRy. Then R is an equivalence relation.

 Proof. Since f(x) = f(x) for any x, R is reflexive. If f(x) = f(y), then f(y) = f(x); so R is
symmetric. If f(x) = f(y) and f(y) = f(z), then f(x) = f(z); so R is transitive.

 In example 1, f(x) = x for any x. In example 2, f(x) could be |x| or x2. In example 3, f(x) is
the angle that the line x makes with a given line y (f(x) is defined to be 0 if x is parallel to or
identical to y). In example 4, f(x) has the same value for any x. Finally, in example 5,
f(x) = x mod m. I leave you to prove that f(x) = f(y) if and only if xRy for the first four examples.
Here is a proof for example 5. By the formula for the quotient and remainder of a division, there
are integers q and r such that x = qm + r and 0 ≤ r < m, and there are integers k and l such that
y = km + l and 0 ≤ l < m. Now r = x mod m and l = y mod m. If x mod m = y mod m, then l = r so
that x - y = qm - km = (q-k)m, a multiple of m; thus xRy. Conversely, supppose that m divides
x - y = (q - k)m + (r - l). Then r - l must also be a multiple of m. Now 0 ≤ r < m and 0 ≤ l < m; so
–m <r – l < m. To see this, imagine that you start at 0 and go r units to the right and then l units
to the left, so that your net displacement is r - l. You can't go as many as m units to the right or
less than 0 units to the left; so your net displacement can't be as much as m units to the right.
You can't go less than 0 units to the right or as many as m units to the left; so your net
displacement can't be as much as m units to the left – that is, -m units. Now the only multiple of
m that lies strictly between -m and m is 0; so r – l = 0 and x mod m = y mod m.

 There are examples for which this theorem makes it easier to prove that a relation is an
equivalence relation. It is easier to prove that x = y or x = -y if and only if |x|=|y| than to prove
that the relation of example 2 is an equivalence relation directly. Here is a more extreme
example. Let S be the set of ordered pairs of non-zero real numbers and let R be the relation on S
defined by (a,b)R(c,d) if and only if a/c = b/d. Here is the direct proof that R is an equivalence

 x y z

 115
relation. To show that (a,b)R(a,b), substitute a for c and b for d in the definition of R: (a,b)R(a,b)
if and only if a/a = b/b, which is true because both fractions are equal to 1. Suppose that
(a,b)R(c,d) so that a/c = b/d. To prove that (c,d)R(a,b) you have to prove that c/a = b/d, which
you do by inverting both of the fractions a/c and b/d. Finally, suppose that (a,b)R(c,d) and
(c,d)R(e,f) so that a/c = b/d and c/e = d/f. To prove that (a,b)R(e,f) you have to prove that
a/e = b/f, which you do by multiplying the equation a/c = b/d by the equation c/e = d/f. Now here
is the short proof: a/c = b/d if and only if a/b = c/d; so the function f((a,b)) = a/b satisfies the
sufficient condition for R to be an equivalence relation.

9.4 Closures of relations

 Let R be a relation on a set S. The reflexive closure of R is the relation obtained from R
by adding just the ordered pairs necessary to make it reflexive. For example, suppose S is the set
of natural numbers and R is the relation <. Then R consists of all the pairs (x,y) such that x < y.
To make R reflexive you have to add the pairs (x,y) such that x = y, and now you have the relation
≤. In general, if R is defined by a condition under which xRy, then to get the reflexive closure of
R, you add "or x = y" to that condition. In this example, the condition "x < y" becomes "x < y or
x = y", which is equivalent to "x ≤ y".

 Now suppose that S is of finite size n and R is represented by a graph or a matrix. How do
you get the reflexive closure of R? Suppose, for example, that R is represented by the graph and
the matrix below.

1 2 0 1 1 0
 1 1 0 0
 0 0 0 0
 0 1 0 0

3 4

 To make R reflexive you have to add the pairs (1,1), (3,3) and (4,4). Now the graph and
the matrix have been changed to the ones shown below.

1 2 1 1 1 0
 1 1 0 0
 0 0 1 0
 0 1 0 1

3 4

To get from R to its reflexive closure, you draw loops on all the vertices (withoout loops)

of the graph of the relation and you change all the 0s to 1s in the principal diagonal of the matrix,
which takes O(n) operations.

 116
The symmetric closure of R is the relation obtained from R by adding just the ordered

pairs necessary to make it symmetric. In the infinite example above, S is the set of natural
numbers and R is the relation <, which consists of the pairs (x,y) such that x < y. To make R
symmetric, you have to add the pairs (x,y) such that y < x, and you now have the relation ≠. In
general, if R is defined by a condition under which xRy, then to get the symmetric closure of R,
you make the disjunction of that condition and a condition equivalent to yRx. In this example,
the condition "x < y" becomes "x < y or y < x", which is equivalent to "x ≠ y".

Now suppose that S is of finite size n and R is represented by a graph or a matrix. In the

finite example above, since (1,3) and (4,2) are arcs that don't have return arcs, you have to add
the return arcs (3,1) and (2,4), so that the graph becomes the one that is shown below together
with its matrix, in which the elements in positions (3,1) and (2,4) have been changed from 0 to 1.

1 2 0 1 1 0
 1 1 0 1
 1 0 0 0
 0 1 0 0

3 4

 In the graph of a relation, for every arc without a return arc you draw the return arc. In
the matrix, for every off-diagonal 1 that sees a 0 in the principal-diagonal mirror, you change that
0 to 1: that is, for every x and y, if MR[x,y] = 1 and MR[y,x] = 0, then MR[y,x]←1 (it isn't
really necessary to test whether MR[y,x] = 0). This takes O(n2) operations.

 The reflexive and symmetric closure of R is the relation obtained from R by adding just
the ordered pairs necessary to make it reflexive and symmetric. You could first make the
reflexive closure and then the symmetric closure of the reflexive closure or do it the other way
around and the resulting relation will be the same. This is obvious for graphs and matrices
because adding loops and adding return arcs are independent operations as are changing diagonal
elements and changing off-diagonal elements (you try it with the finite example above). In the
infinite example, the symmetric closure of < is ≠, and to get the reflexive closure of ≠ you make
the disjunction with =, so that x is related to y by the reflexive and symmetric closure if x ≠ y or
x = y, that is, for all x and all y.

 The transitive closure of R is the relation obtained from R by adding just the ordered pairs
necessary to make it transitive. Finding the transitive closure of a relation is trickier than finding
the reflexive or symmetric closure. You may think that all you have to do is to look at all the
ordered triples (x,y,z) and add the pair (x,z) if xRy and yRz, but if you look at the triples in the
wrong order the resulting relation may not be transitive, as the following example will show.
Suppose R is the relation whose graph is shown below.

1 4 3 2

 Suppose you examine the ordered triples in the order given in the algorithm above that
determines whether a relation is transitive: x goes from 1 to 4 in the outer loop, z does the same
thing in the intermediate loop and so does y in the inner loop. When x = 1 and z = 2, there is no y

 117
such that xRy and yRz; so no new pairs are added. When x = 1 and z = 3, there is such a y (y = 4);
so the pair (1,3) is added and the graph now looks like the one below.

1 4 3 2

 Now since 1 is related to 3 and 3 is related to 2, for the relation to be transitive, 1 has to be
related to 2. But you have already exhausted all the triples with x = 1 and z = 2; so the pair (1,2)
will never be added.

 The same thing happens if y changes in the intermediate loop. You don't add the pair
(1,3) until y gets to 4, and by then it's too late to add the pair (1,2), which should have been done
when y was equal to 3.

 But now suppose that y changes in the outer loop. When y = 3, x = 4 and z = 2, since 4R3
and 3R2, the pair (4,2) will be added and the graph looks like the one below.

1 4 3 2

 Later on, y will advance to 4. When x=1 and z=2, since 1 is related to 4 and 4 is now
related to 2, the pair (1,2) will get added, and then, when z advances to 3, the pair (1,3) will get
added. The graph now looks like the one below, and you can verify that this relation is transitive.

1 4 3 2

 Will this approach always work? If you examine the original graph and the final one, you
will notice that for every pair (x,z), if there is a path of length > 0 from x to z in the original
graph, then there will be an arc (x,z) in the final one. In general, for every pair of vertices (x,z)
in the graph of a relation R, if there is a path of length > 0 from x to z, then there will be an
arc (x,z) in the graph of the transitive closure of R. We prove this proposition by induction on
the length n of the path from x to z.

Basic step: n = 1. A path of length 1 is an arc; so this path is the required arc.

Induction step. Suppose that n ≥ 1 and that the proposition is true for paths of length n.
Suppose that the graph of R has a path of length n + 1 from x to z. Let y be the second-last vertex
on this path. Then there is a path of length n from x to y and an arc from y to z. By the induction
hypothesis, the graph of the transitive closure of R has an arc from x to y, and it also has an arc
from y to z. For the relation to be transitive, there must also be an arc from x to z, QED.

 Suppose you take the graph of a relation R and draw an arc (x,z) for every pair of vertices
(x,z) such that there is a path of length > 0 from x to z. This is a necessary condition for the
resulting relation T to be transitive, but is it a sufficient condition? Well, if xTy, then in the graph
of R there is a path of positive length from x to y, and if yTz, then there is also a path of positive
length from y to z. By following the first path from x to y and then the second path from y to z
you get a path of positive length from x to z, so that the graph of T must contain the arc (x,z) and
thus xTz. The graph of the transitive closure of a relation R is obtained from the graph of R

 118
by drawing an arc from x to z for every pair of vertices (x,z) such that there is a path of
positive length from x to z in the graph of R.

 Let S be the set of integers and R the relation on S defined by xRy if y = x + 1. Use the
above theorem to prove that the transitive closure of R is the relation <.

 Using BFS we can determine, for each pair (x,z), whether there is a positive-length path
from x to z, but there is an easier way. The algorithm below looks at all the ordered triples
(x,y,z), with y changing in the outer loop, and draws the arc (x,z) if there is an arc (x,y) and an arc
(y,z).

procedure Transitive_closure(G: graph of a relation R)
 for every vertex y in G do
 for every non-loop arc (x,y) entering y do
 for every non-loop arc (y,z) exiting y do
 if there isn't an arc (x,z) then draw one end if;
 end for (y,z);
 end for (x,y);
 end for y;
end Transitive_closure.

 This algorithm has already been traced on the graph drawn above and it worked on this
graph. Will it always work? Let a and b be two vertices of G such that there is a positive-length
path from a to b (see the diagram below).

a=v[0] v[1] v[2] ... v[i-1] v[i] v[i+1] ... v[k]=b

 During the execution of this algorithm, y will be set to each of the vertices of G including
all the intermediate vertices v[1], v[2],…,v[k-1] of the path from a to b. Let v[i] be the
(chronologically) first intermediate vertex of the path such that y is set equal to v[i]. While y is
equal to v[i], x will be set equal to v[i -1] and z will be set equal to v[i +1]. Since there is an arc
from x to y and an arc from y to z, if there isn't already an arc from x to z, the algorithm will draw
one; so that either way there will now be an arc from x to z. There is now a path from a to b that
avoids v[i] and doesn't contain any of the vertices that weren't originally there (see the diagram
below).

a=v[0] v[1] v[2] ... v[i-1] v[i] v[i+1] ... v[k]=b

 The same thing will happen with the second intermediate vertex of the path to which y is
assigned, and the third one, and so on, until a path has been made from a to b that contains none
of the intermediate vertices of the original path and no other vertices either. This path is an arc
from a to b. If there is a positive-length path from a to b, the algorithm will draw an arc from a
to b. If there isn't a positive-length path from a to b, then the algorithm will not draw an arc from
a to b, because it only draws an arc from x to z if there is a path of length 2 from x to z. The
algorithm correctly draws the graph of the transitive closure of the relation whose graph is G.

 If G is represented by a matrix M, then the algorithm becomes the one shown below,
which is Warshall's algorithm.

 119

procedure Warshall(n: natural; M: matrix[1..n][1..n] of a relation R)
local variables x,y,z: natural;
 for y←1 to n do
 for x←1 to n do
 for z←1 to n do
 if M[x,y] = 1 and M[y,z] = 1 then M[x,z]←1 end if;
 end for z;
 end for x;
 end for y;
end Warshall.

 This algorithm takes O(n3) operations because there are 3 nested loops, each of which is
iterated n times. The correctness proof of this algorithm in some elementary texts uses the last
intermediate vertex in the path and an implied loop invariant. I think my proof is easier to
understand.

 The reflexive and transitive closure of a relation R is the relation obtained from R by
adding just the pairs necessary to make it reflexive and transitive. Adding all the pairs (x,x)
beforehand to get the reflexive closure doesn't change the pairs (x,y) of distinct vertices that need
to be added to get the transitive closure because if xRx and xRy then xRy; so you can take these
two closures in either order.

 The symmetric and transitive closure of a relation R is the relation obtained from R by
adding just the pairs necessary to make it symmetric and transitive. Let R be the relation whose
graph is shown on the left below. Its transitive closure T is shown in the middle and the
symmetric closure of T is shown on the right.

 1 2 1 2 1 2

 3 4 3 4 3 4

 Is that relation transitive? It contains one of the forbidden configurations – an arc with a
return arc but no loop at either vertex – so the relation is not transitive.

 Now we start with the original relation and make the symmetric closure S (the diagram on
the left below).

1 2 1 2 1 2

3 4 3 4 3 4

 120

To make the transitive closure of this relation S, we apply the graph version of Warshall's
algorithm. When y = 1, there is one entering arc (2,1) and one exiting arc (1,2); so you have to
draw the loop (2,2) (the middle diagram above). When y = 2, there are two entering arcs (1,2)
and (4,2) and two exiting arcs (2,1) and (2,4). The pair of arcs (1,2), (2,1) makes you draw the
loop (1,1). The pair of arcs (1,2), (2,4) makes you draw the arc (1,4). The pair of arcs (4,2), (2,1)
makes you draw the arc (4,1). The pair of arcs (4,2), (2,4) makes you draw the loop (4,4). Now
the graph looks like the one on the right above. When y = 3 there are no entering arcs and no
exiting arcs; so no extra arcs have to be drawn. When y = 4 there are two entering arcs (1,4) and
(2,4) and two exiting arcs (4,1) and (4,2). The pair of arcs (1,4), (4,1) would make you draw the
loop (1,1), but that loop is already there. The other three pairs of arcs too add no new arcs; so the
graph on the right above is the transitive closure of the graph on the left – and it is symmetric.

The symmetric and transitive closure of a relation is made by first taking the symmetric

closure and then the transitive closure and not the other way around. But Warshall's algorithm is
not the most efficient way of constructing the transitive closure of a symmetric relation. In the
graph of a symmetric relation, you can replace each pair of arcs (x,y), (y,x) by the edge {x,y} and
get an undirected graph. For the directed graph on the left above, the undirected version is shown
on the left below, and for the directed graph on the right above, the undirected version is shown
on the right below.

 1 2 1 2

 3 4 3 4

 Now how would you get from the graph on the left above to the graph on the right?
Notice that the graph on the left is not connected. It has two "pieces", one consisting of the
vertices 1,2,4 and one consisting of the vertex 3. In the graph on the right, every pair of vertices
in the same piece is connected by an edge and there is a loop at every vertex except vertex 3,
which is isolated (degree 0). Does this process always construct the transitive closure of a
symmetric relation?

 First, let's define "piece" more rigourously. Given an undirected graph G with vertex set
V, define the relation R on V as xRy if there is a path in G from x to y. This relation is reflexive
because there is a path of length 0 from x to x for every vertex x. The relation is symmetric
because the graph is undirected; so if there is a path from x to y, following the path backwards
makes a path from y to x. And the relation is transitive because if there is a path from x to y and a
path from y to z, then by following the first path from x to y and then the second path from y to z
you get a path from x to z. Thus R is an equivalence relation. The equivalence classes are called
the connected components of G, and for each vertex x, [x] is the set of vertices y such that there is
a path from x to y.

 Suppose that x and y are two distinct vertices in the same connected component of G.
Then there is a positive-length path from x to y in the directed version of G, so that there must be
an arc from x to y in the transitive closure of (the relation whose graph is) G. But since the

 121
relation is symmetric, there must be a path from y to x in G; so there is also an arc from y to x in
the transitive closure of G, and in the undirected version of G there is an edge {x,y}. If x and y
are in different connected components of G, then there is no path from x to y, so there is no edge
{x,y} in the transitive closure of G. Now suppose that x is a non-isolated vertex. Then x has at
least one neighbour y. In the undirected version of G there is an edge {x,y}; so in the directed
version there are the arcs (x,y) and (y,x). But for the relation to be transitive, there must be a loop
at the vertex x. On the other hand, if x is an isolated vertex, there is no positive-length path from
x to any vertex; so in the transitive closure there is no arc from x to any vertex including x, hence
no loop at x. To get the transitive closure of a symmetric relation, divide the undirected
graph of the relation into connected components, draw an edge between every pair of non-
adjacent vertices in the same component and draw a loop at every non-isolated vertex that
doesn't already have a loop.

 This process is clearly easier to execute by hand than Warshall's algorithm. Is it any more
efficient by computer? Remember that at the end of Chapter 8 I promised you that there would
be another application of BFS in Chapter 9? A slight modification of BFS divides a graph into
connected components. You don't initialize the array P to zero, and instead of setting P[v] to u
you set P[v] to s. With this modification of BFS, the algorithm below divides an undirected
graph into connected components.

procedure Components(n: natural; G: n-vertex graph)
 local variable s: natural;
 for s←1 to n do P[s]←0 end for;
 for s←1 to n do
 if P[s] = 0 then BFS(G,s,P) end if;
 end for;
end Components.

 We trace this algorithm on the graph drawn below.

 2 4 3 6 5 9 i= 1 2 3 4 5 6 7 8 9 10
 P[i] 0 0 0 0 0 0 0 0 0 0
 s=1: 1 1 0 1 0 0 1 0 0 0
 7 1 8 10 s=2: no change because P[2]≠0
 s=3: 1 1 3 1 0 3 1 3 0 0
 s=4: no change
 s=5: 1 1 3 1 5 3 1 3 0 5
 s=6,7,8: no change
 s=9: 1 1 3 1 5 3 1 3 9 5
 s=10: no change. P is final.

 After this algorithm has been executed, for each pair of vertices (x,y), x and y are in the
same component if and only if P[x] = P[y]. For each pair of vertices x and y such that x < y, if
P[x] = P[y] and there isn't an edge between x and y, then you draw one (in matrix form, you set
M[x,y] and M[y,x] to 1 without testing whether those elements were initially 0); this does O(n2)
operations. Then, for each vertex x of degree > 0 you draw a loop at x if there isn't already a loop
there (you set M[x,x] = 1) – this does O(n) operations. If you want the transitive and reflexive

 122
closure of a symmetric relation, or the reflexive, symmetric and transitive closure of an arbitrary
relation, then you draw a loop at every vertex whether or not it is of degree 0.

 How many operations does the algorithm Components do? Each execution of BFS(G,s,P)
looks at all the neighbours of each vertex u in the connected component [s] of G containing s; so
the number of operations done by this call to BFS is proportional to n times the number of
vertices in [s]. The total number of operations done by all the calls to BFS is thus proportional to
n times the total number of vertices, which is in O(n2). The number of operations done to
manage both of the loops is O(n); so the algorithm Components runs in O(n2) time (or O(m+n)
for sparse graphs with m edges represented by adjacency lists). Since the rest of the procedure
for finding the transitive closure of a symmetric relation also runs in O(n2) time, the whole
procedure runs in O(n2) time, which is more efficient than Warshall's algorithm, which runs in
O(n3) time. There are asymptotically faster transitive closure algorithms than Warshall's, but
none of them run in O(n2) time; so this way of finding the transitive closure of a symmetric
relation is an improvement over using an algorithm for finding the transitive closure of an
arbitrary relation. This is another result that I obtained independently and I haven't found it in the
literature yet, but I'd be very surprised if it isn't there somewhere!

 123
CHAPTER 10. GENERATING COMBINATORIAL OBJECTS

 Suppose you want to construct the truth table of some long and complicated Boolean
expression with many distinct variables. Finding the truth value of such an expression for each
assignment of truth values to the variables is slow and error-prone by hand but it is easy to write
a computer program to do it. But then you would need to write a program to generate all the
strings of 0 and 1 that represent the assignment of truth values to the variables. More generally,
you may want to write a computer program to generate a list of words (strings of symbols) that
represents a set of combinatorial objects such as subsets of a set, combinations, permutations,
compositions of an integer, partitions of a set, partitions of an integer, balanced parenthesis
systems, trees, graphs or maps (graphs drawn on surfaces) so that you can get your computer to
study the properties of these objects faster and more accurately than you could by hand. There
are many books and articles on this subject. One of the most comprehensive is [Albert Nijenhuis
and Herbert S. Wilf, Combinatorial Algorithms for Computers and Calculators, Academic Press,
1978]. But I'll restrict myself to three of these objects – the strings of 0 and 1 that represent
subsets of a set (and truth values), the strings of positive integers that represent permutations and
the strings of 0 and 1 that represent balanced parenthesis systems.

10.1 Lexicographical order

 The easiest way to generate a set of words is to generate them in lexicographical order,
the order in which words are listed in a dictionary. Assuming that the set of letters (the symbols
of which the words are composed) is ordered, words can be ordered by comparing the first (that
is, leftmost) letter in which the words differ; if none of the letters differ, then the shorter word
comes before the longer one. The word the word string comes before the word supper because
they have the same first letter but the second letter of string comes before the second letter of
supper and the word ball comes before the word ballistic.

 Here is a list of the 16 binary strings (strings of 0 and 1, which are called bits) of length 4
in lexicographical order (ignore the number to the right of each string for the moment):

0000 1
0001 2
0010 1
0011 3
0100 1
0101 2
0110 1
0111 4
1000 1
1001 2
1010 1
1011 3
1100 1
1101 2
1110 1
1111 5
total 31

 124

You could generate the list of binary strings of length n recursively by generating the
strings of length n – 1 twice, putting a 0 in front of all the strings in the first list and a 1 in front of
all the strings in the second list, but if you want to know what string follows the current one you
need to find a non-recursive description of this list. Examining the list above, you can observe
that the first string is 00…00 and that to get from one string to the next, you start from the right
end of the string, changing each 1 you meet to a 0 until you come to a 0; then you change that 0
to a 1 and then quit. If you applied that algorithm to the last string 11…11, you would change it
to 00…00 and never quit; so you create a bit before the first one – a sentinel – and set it to 0.
Then after the real string gets changed to 00…00, the sentinel gets changed to 1, which tells you
that 11…11 was the last string and the new one isn't to be processed. This is the way an
odometer in a car works; for instance, the number 345999 gets changed to 346000 and the
number 999999 gets changed to 000000 – the sentinel then tells you that it's time to buy a new
car. With an odometer the biggest digit is 9 and with binary strings it's 1, but in either case it gets
changed to the smallest digit, which is 0, and the digit to the left of the string of biggest digits
gets increased by 1.

 What is the total number of changes that are made when you generate the whole list? The
number to the right of each binary string is the number of bits, including the sentinel, that get
changed in passing from that string to the next one. The total number of bits that get changed is
31, and you may guess from this number that for binary strings of length n the total number of
changes is 2n+1 − 1. You could prove this assertion by standard induction on n, but if you don't
know the answer in advance, you'd want to be able to derive it from scratch. There's a way to do
this that takes horse power and a way that takes brain power.

 The horse power method involves counting the number of strings that require i changes,
multiplying by i and then summing over all possible i. If the last bit is 0, only 1 bit gets changed.
This is the case for half of the 2n binary strings of length n; that is, for 2n−1 strings. If the last bit
is 1 but the second-last bit is 0, then 2 bits get changed. This is the case for a quarter of the
strings – for 2n−2 strings. Similarly, 3 bits get changed in 2n−3 strings, and so on until all n bits
get changed in 1 string (0111…1) and n + 1 bits including the sentinel get changed in 1 string
(11…11). So the total number of changes is

 2n−1 + 2 × 2n−2 + 3 × 2n−3 + L + (n − 2) × 22 + (n − 1) × 21 + n × 20 + (n +1).

 How would you find a formula for this monstrous sum? Before attempting this feat, I'll
tell you another story. One New Year's Eve a father, hoping to teach his son to work for his
money, offered to pay him to do the dishes every day instead of giving him an allowance. His
son agreed on condition that he get paid 1 cent on January 1, 2 cents on January 2, 4 cents on
January 3, 8 cents on January 4 and so on until the end of the month. Not having studied
mathematics beyond grade 10, the father agreed. After a week the father realized that the price
he would have to pay would soon grow beyond his means; so he cancelled the agreement and
excused his son from any more dishwashing. How much would he have had to pay his son had
he continued to double the salary each day until the end of the month?

 For a month with n + 1 days, the total price, denoted by S, is given by the formula

 125

 S = 20 + 21 + 22 + L + 2n+1 + 2n.

To be able to cancel out most of the terms in the above equation, we multiply each of them by 2:

 2S = 21 + 22 + 23L + 2n + 2n+1.

Now we subtract the first equation from the second one. Most of the terms cancel out and we get
S = 2n+1 − 1. With n = 30 (since January has 31 days), this means that the father would have had
to pay his son $21474836.47.

 This kind of series of numbers is called a geometric series. The most general form of
such a series is a + ar + ar2 + L + arn. I invite you to find a formula for the sum of this series
in two cases: when r ≠ 1 and when r = 1.

 Now the series we have to sum is more complicated than a geometric series, but the same
trick used to sum a geometric series will reduce the series we have to sum to a geometric series.
Ignoring the term n + 1 for the moment, writing the rest of the series backwards and equating it to
S, we get

 S = n × 20 + (n − 1) × 21 + (n − 2) × 22 + L + 3 × 2n−3 + 2 × 2n−2 + 2n−1.

Again we multiply by 2:

 2S = n × 21 + (n − 1) × 22 + (n − 2) × 23 + L + 3 × 2n−2 + 2 × 2n−1 + 2n.

And again we subtract the first equation from the second one:

 S = 21 + 22 + 23 +L + 2n−2 + 2n−1 + 2n − n.

Now except for the the –n we have a geometric series which is the same as the one we have
already summed except that the term 20 = 1 is missing; so its sum is 2n+1 − 2. We have to
subtract n from this sum and we also have to add n + 1; so the total number of changes is
2n+1 − 1.

 The brain power method involves counting the number of times that each bit gets
changed. The rightmost bit gets changed in half the strings; that is, 2n−1 times. The second
rightmost bit gets changed in a quarter of the strings - 2n−2 times - the third rightmost bit 2n−3
times and so on until the leftmost bit gets changed twice and the sentinel once; so the total
number of changes is 20 + 21 + 22 + L + 2n+1 + 2n = 2n+1 − 1. The average number of changes
over all the 2n binary strings of length n is 2 – 1/ 2n, which approaches 2 as n approaches infinity.
The algorithm for generating the binary strings in lexicographical order runs in constant average
time, or CAT for short. Well, if the truth be told, CAT stands for constant amortized time, but
whatever the A stands for, I can assure you that this acronym has nothing to do with either felines
or DNA sequences.

 126
 If you want to generate a random binary string, all you have to do is toss a fair coin for
each of the n bits, making the bit 1 if the coin lands heads and 0 if the coin lands tails. On a
computer, that would mean making each bit either a 0 or a 1 with equal probability using a
random number generator.

 In what follows we need to define two parts of a word x1, L , xn: a prefix x1, L , xi of
length i consists of the i leftmost symbols of the word and a suffix xn−i+1, L , xn of length i
consists of the i rightmost symbols of the word. Here i can be any number from 0 to n inclusive.
If i = 0, the prefix or the suffix is empty and if i = n, it's the whole word.

 A permutation of length n is an arrangement of the numbers 1, 2, … , n. There are n!
permutations of length n. There are n ways to choose which of the n numbers to put first, and for
each of these ways there are n – 1 ways to choose which of the remaining n – 1 numbers to put
second, for a total of n(n-1) ways to fill the first two positions, and for each of these ways there
are n – 2 ways to choose which of the remaining n – 2 numbers to put third, for a total of
n(n-1)(n-2) ways to fill the first three positions, and so on until the last position is filled with the
last remaining number; so the total number of ways to arrange the n numbers is n!

 Here is a list of the 24 permutations of length 4 in lexicographical order:

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

 In the first permutation the numbers are increasing order and in the last string they are in
decreasing order, but these strings of numbers are too short to illustrate the method of changing
each permutation to its lexicographical successor; so we choose a longer example: 62358741.

 127
The only way to change a permutation is to exchange two of its numbers. If you want to make
the pemutation lexicographically bigger, you have to exchange a number with a bigger number
on its right. Now the last four numbers of 62358741 are in decreasing order from left to right; so
none of them have a bigger number on its right and you have to choose some number to the left
of these four numbers. The further left you go, the bigger the lexicographical increase you'll
make; so you have to choose the rightmost number that has a bigger number on its right, that is,
the 5. And you have to exchange it with the smallest number on its right that is bigger than 5,
that is, the 7. Once you do this, the permutation becomes 62378541. Note that the last four
numbers are still in decreasing order from left to right, but not the last five numbers. Of all the
permutations that start with 6237, this one is the biggest and we have to make it the smallest; so
we reverse the suffix 8541 and we get 62371458. This is the analogue of changing each 1 on the
right of a binary string to 0 and the rightmost 0 to 1: we increase by the minimal amount the
rightmost number that can be increased and then we make everything to its right as small as
possible.

 Here is the algorithm for finding the successor of a given permutation a[1]a[2]…a[n]:

Boolean function nextperm(n: natural, a: array[1..n] of natural)

{precondition: The array a consists of distinct members of the set {1,2,…,n}}.
 local variables i, j: natural;
 i ← n – 1; {First we look for the rightmost element a[i] such that a[i] < a[i+1].}
 while (i > 0) and a[i] > a[i+1] do
 i ← i – 1;
 end while;
 if i = 0 then return true end if; {true means that the permutation was n…21.}

{We haven't returned; so i > 0 and a[i+1] > a[i+2] > … > a[n] but a[i] < a[i+1].}
 j ← n; {Now we look for the smallest element among a[i+1],…,a[n] that is > a[i].}
 while a[j] < a[i] do
 j ← j – 1;
 end while; {a[j] > a[i] > a[j+1]}
 exchange (a[i], a[j]); {a[i+1] > a[i+2] > … > a[n] is still true. We reverse this suffix.}
 for j from 1 to floor((n-i)/2)
 exchange(a[i+j], a[n+1-j]);
 end for;
 return false;
end nextperm.

 What is the average number of exchanges that this algorithm will do for big n? The first
step is to find the total number of exchanges, or at least an approximation to this number that is
accurate enough that the error tends to 0 as n tends to infinity. The horse power method is to
count the number of permutations that require i exchanges, multiply by i and sum over i. This
can be done, but it takes several pages and is error-prone; so I'll spare you the details and show
you the brain power method: you count the number of permutations for which each element gets
exchanged with an element on its left. For the moment we ignore the fact that the last
permutation is not changed.

 The first exchange instruction – exchange(a[i], a[j]) – is done for every permutation; so it
happens n! times. When the longest suffix such that a[i+1] > a[i+2] > … > a[n] gets reversed,

 128
a[n] gets exchanged with a number on its left if this suffix is of length at least 2. This happens if
a[n] < a[n-1]. For every permutation that satisfies this condition, there are 2! permutations
altogether - you get them by making the 2! permutations of a[n] and a[n-1]; so that the number of
permutations that satisfy this condition is n!/2!. Also, a[n-1] gets exchanged with a number on its
left if this suffix is of length at least 4. This happens if a[n] < a[n-1] < a[n-2] < a[n-3], and since
there are 4! ways to arrange that suffix, the number of permutations that satisfy that condition is
n!/4!. Continuing this process, we find that the total number of exchanges is

n!(1 + 1/2! + 1/4! + 1/6! + …).

Of course, this series doesn't really go on forever, because the length of the suffix can't
exceed n – 1. The expression for the last term is complicated – it depends upon whether n is odd
or even – but we can ignore the fact that the series stops because we want to divide by n and then
take the limit as n approaches infinity. And we can also continue to ignore the fact that the last
permutation doesn't get changed because the number of exchanges wouldn't exceed n, and when
you divide n by n! and let n tend to infinity, the quotient tends to 0. In the limit, then, the average
number of exchanges is 1 + 1/2! + 1/4! + 1/6! + … to infinity.

 Now you may recall a series that looks something like this sum. It's in Section 3.2:

ex =1 + x +
x2

2 ! +
x3

3 ! +
x4

4 ! + ...

Substituting x = 1 into this series, we get

e = 1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! +…

Substituting x = -1 into the same series, we get

1/e = 1 – 1 + 1/2! – 1/3! + 1/4! – 1/5! + 1/6! - …

Adding these two equations, we get e + 1/e = 2 + 2/2! + 2/4! + 2/6! + …; so as n tends to infinity,
the average number of exchanges tends to (e + 1/e)/2 = 1.543080635…

 Nextperm too is a CAT algorithm.

 To generate a random permutation of length n, you would do a sort of randomized
selection sort. For each i from 1 to n – 1, instead of exchanging a[i] with the smallest element
among a[i]…a[n], you exchange it with a[j], where j is an integer chosen at random from the
integers i,…,n.

 A balanced parenthesis system of length 2n, also called a Dyck word after the German
mathematician Walther Franz Anton von Dyck, consists of n left parentheses and n right
parentheses such that among the first i parentheses there are at least as many left parentheses as
right parentheses. If you change each left parenthesis to a 1 and each right parenthesis to a 0, the
Dyck word becomes a binary string b1b2b3Lb2n such that any prefix b1b2b3Lbi has at least as
many 1s as 0s. For example, the binary string 11010010 represents the Dyck word (() ()) ().
A Dyck path is a series of steps in the plane, starting at the origin, each one going east one unit

 129
and either north (for a 1) or south (for a 0) one unit, that ends on the x axis and never goes below
it. The Dyck path corresponding to the binary string 11010010 is shown below.

 O O

 O O O O

O O O

 How many Dyck words are there of length 2n? This problem was solved by several
people in 1887; the most direct solution appears in [D. André, Solution directe du problème
résolu par M. Bertrand, Comptes Rendus de l’Académie des Sciences, Paris 105 (1887) 436–
437]. It was stated in terms of ballot counting: if two candidates got the same number of votes, in
how many ways can the scrutineer count the ballots so that his favourite candidate never trails his
opponent? If you have read this far, you will know by now that I wouldn't be satisfied with such
a serious model. Instead, suppose that a drunkard gets booted out of a bar by the bouncer, who
threatens to twist his neck if he takes one step inside the bar before he sobers up. Starting at the
entrance to the bar, the drunkard takes 2n random steps, either away from the bar or towards it,
without ever entering the bar, until he collapses in a heap at the entrance to the bar. In how many
ways can he do this?

 If the bouncer had not made this threat, the drunkard could have taken any sequence of n
steps north (away from the bar) and n steps south. Among the 2n steps, n of them are chosen to
be north. In how many ways can you choose n objects out of 2n? More generally, in how many
ways can you choose r objects out of n? Recall that there are n! ways to permute n objects.
Suppose you want to choose r of them and permute them – that is, among the n objects, you want
to choose one to be first, one to be second and so on up to r of them. There are n ways to choose
the first object, n –1 ways to choose the second object and so on – the object to be put in the rth
place can be chosen in n – r + 1 ways, so that the total number of ways to choose all the r objects
and permute them is n(n-1)(n-2)…(n-r+1) = n!/(n-r)!. But you only want to choose them, not to
permute them too. For each choice of those r objects, there are r! ways to permute them; so the

number of ways to choose them without permuting them is n!
(n − r)!r! . This is sort of like

counting the cows in a field by counting the legs and dividing by 4; it sounds more complicated
than counting the cows directly, but in this case it's actually easier. Anyway, since the drunkard

is choosing n of his 2n steps to be north, the number of ways he can to it is (2n)!n!×n! .

 Now some of these choices will lead him into the bar. As soon as he takes one step inside
the bar, the bartender will twist his neck by 180 degrees, which will reverse all of the drunkard's
subsequent steps. So instead of going from one step inside the bar to the entrance, he will go
from one step inside the bar to two steps inside the bar before he collapses, meaning that he will
have taken n - 1 steps north and n + 1 steps south (see the diagram below). The transformation
done by the bouncer is uniquely reversible; if the drunkard had taken any combination of n - 1
steps north and n + 1 steps south without getting his neck twisted, he would have collapsed two
steps inside the bar, but instead, when he gets one step inside the bar, the bouncer twists his neck
and he collapses at the entrance. This establishes a bijection between the set of walks that go
inside the bar and end at the entrance and the set of all the walks that end two steps inside the bar;

 130
so the number of walks that go inside the bar and end up at the entrance is equal to the number of

ways of choosing n – 1 steps out of 2n to go north, which is (2n)!
(n − 1)!(n +1)! .

 O O

 O O O

O O O The drunkard would have gone here,

 O but the bouncer twisted his neck here;

 O so the drunkard went here instead.

 Among the (2n)!n!×n! walks that end at the entrance, (2n)!
(n − 1)!(n +1)! enter the bar; so the

number of walks that don't enter the bar is equal to (2n)!
n!×n! −

(2n)!
(n − 1)!(n +1)! =

(2n)!
n!(n +1)! . The

numbers C(n) = (2n)!
n!(n +1)! are called the Catalan numbers, named after the Belgian

mathematician Eugène Charles Catalan, and they count a large number of combinatorial objects,
including the triangulations of a polygon with n + 2 sides, the ways of parenthesizing n + 1
factors and various sorts of trees including binary trees. A table of Catalan numbers can be
constructed by using the recursive definition C(0) = 1, C(n) = (4n-2)C(n-1)/(n+1) if n ≥ 1 (you
prove it). The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132 (you calculate these numbers
and the next few). Below are the 14 Dyck words of length 8 in lexicographical order:

10101010
10101100
10110010
10110100
10111000
11001010
11001100
11010010
11010100
11011000
11100010
11100100
11101000
11110000

 The first Dyck word of any (even) length is 101010…10 and the last one is
11…1100…00. How do you transform a given Dyck word into its successor? You have to
change to a 1 the rightmost 0 that can be changed. If a 0 is followed only by 0s, it can't be
changed to a 1 because there would be no way to restore the equality between the number of 0s
and the number of 1s by changing any of the numbers to the right of that 0. If the drunkard was
going to go straight to the entrance to the bar before he collapsed and then changed his mind and

 131
took one step away from the bar, he'd collapse before he made it to the entrance. So you have to
change to a 1 the rightmost 0 that has a 1 to its right. You find it by starting at the rightmost bit
and passing over all the 0s until you get to a 1 and then over all the 1s until you get to a 0. If you
never get to a 0 after encountering 1s, the Dyck word is 11…1100…00, the last one in
lexicographical order, and you quit generating them. Otherwise you change to a 1 the first 0 you
encounter after encountering some 1s. Then you want to make the suffix following that new 1 as
small as possible lexicographically; so you pad with 0s until there are as many 0s as 1s in the
prefix (after you make the drunkard change a southward step to a northward one, you send him
straight to the entrance to the bar) and then you pad with 10…10 until the word has 2n numbers
(you make him alternate northward steps with southward ones until he collapses). How do you
know how many 0s to add before you start adding 10? You count the 0s as you pass over them,
then you subtract 1 from that number every time you pass a 1. In this way, you're tracing
backwards the drunkard's last few steps and keeping track of the number of steps he is away from
the bar. When (or if) you next encounter a 0, the number you have is the number of steps the
drunkard is away from the entrance to the bar after he made the southward step represented by
that 0. When you change the 0 to a 1, you've sent him 2 steps farther from the bar; so you add 2
to the number, and that's the number of 0s you have to add before you start adding 01.

Here is the algorithm:

Boolean function NextDyck (n; natural; b: array[1..2*n] of {0,1})
 local variables d, k: natural;
 d ← 0;
 k ← 2*n;
 do {Search for the rightmost occurrence of 1.}
 d ← d + 1;
 k ← k – 1;
 while b[k] = 0;
 do {Search for the rightmost occurrence of 01.}
 d ← d – 1;
 k ← k – 1;
 while (k > 0) and (b[k] = 0); { d is now the number of 1s minus the number of 0s in b[1..k].}
 if k = 0 then return true end if; {b is 11…1100…00}
 b[k] ← 1; {Change the 0 in the rightmost 01 to 1.}
 d ← d + 2;
 do {Append 0s to the right of this new 1 until the prefix is balanced.}
 k ← k + 1;
 b[k] ← 0;
 d = d ← 1;
 while d > 0;
 while k < 2*n {Pad with 10 until the word is of length 2n.}
 k ← k + 2;
 b[k-1] ← 1;
 b[k] ← 0;
 end while;
 return false;
end NextDyck.

 132
 How many bits get written, on the average, in transforming each Dyck word to its
successor? This number tends to 16/3 as the length of the word approaches infinity. The proof is
too long and complicated to be included here, but I'll tell you where to find it and how I
discovered it.

I found four articles, each of which use a different method for generating binary trees, and
I wanted to know the extent to which the theoretical estimate of the average time complexity
coincides with the experimental estimate found by programming and executing each of those
methods. Being too lazy to do the programming myself, I hired a second-year undergraduate
student, Pierre Auger (who is now Dr. Auger) to do the programming for me. If that's all he did,
I would merely have acknowledged his contribution at the end of the article I submitted on the
subject. But instead he found errors in the description of some of the algorithms and corrected
them; so I included him as a joint author. One of those articles [T.R. Walsh, Generating
nonisomorphic maps without storing them, SIAM Journal of Algebraic and Discrete Methods,
Vol. 4 (1983), 161-178] contains the above algorithm without a time-complexity analysis; so I
proved, using the horse power method, that the total number of bits that get written in
transforming all the Dyck words of length n is C(1) + C(2) + … + C(n+1) and that when you
divide that number by C(n) the quotient tends to 16/3 as n tends to infinity. The joint paper [P.
Auger and T.R. Walsh, Theoretical and Experimental Comparison of Four Binary-tree
Generation Algorithms, Congressus Numerantium 93 (1993), 99-109] omits most of the tedious
details of the derivation of the formula C(1) + C(2) + … + C(n+1), which occupy several pages.
I later used the brain power method to derive this formula and published it in [P. Auger and T.R.
Walsh, Addendum to Theoretical and Experimental Comparison of Four Binary-tree Generation
Algorithms, Congressus Numerantium 112 (1995), 3-5]; so the entire proof is contained in the
union of these two articles.

It turns out that the above algorithm is neither the first nor the most efficient one for

generating Dyck words in lexicographical order. The one in [I. Semba, Generation of all the
balanced parenthesis strings in lexicographical order, Information Processing Letters 21 (1981),
188-192] examines an average of 3 bits instead of 16/3. I include my algorithm here because it's
mine and because it gives me the opportunity to pursue the model of the drunkard's walk.

 The methods known for generating a random Dyck word are also too complicated to be
included here. If you're interested, you can find one of these methods and a reference to another
one in [Dominique Gouyou-Beauchamps, Combinatorics and Random Generation, Algorithms
Seminar 2001-2002, F. Chyzak (ed.), INRIA, (2003), 177-182].

10.2 Gray codes

 In another computer game I played, you travel from one time period to another in a time
machine. In each time period there are things to do and you have to do them quickly because the
time machine is programmed to return to its original time period after a certain period of time. In
one of these time periods there is a locked sarcophagus you have to open. The sarcophagus has 8
levers, each in the down position, and you can toggle them between the down position and the up
position, but only one lever at a time. One combination of positions of all the levers will unlock
the sarcophagus, but the game gives you no hint as to what combination that is; so you have to
keep trying them until you get the right one. The positions of the levers can be expressed as a
binary string of length 8, with down represented by 0 and up by 1. I started generating all these

 133
combinations of positions in lexicographical order, but I was too slow: before I could get the
right combination, the time machine vanished, stranding me in that time period, and I lost the
game. Apparently, doing an average of two lever pulls to get from one combination of positions
to the next just won't cut it.

 Fortunately there is a way of ordering the length-n binary strings so that each string
differs from its predecessor in a single bit. It was invented by Frank Gray to prevent spurious
output from electromechanical switches and published in [Gray, F.: Pulse Code Communication.
U.S. Patent 2 632 058 (March 17, 1953)]. Here are the lists of length-n in Gray's order for the
first few values of n.

n = 0 n = 1 n = 2 n = 3 n = 4

 0 00 000 0000
 1 01 001 0001
 11 011 0011
 10 010 0010

110 0110
111 0111
101 0101
100 0100
 1100
 1101
 1111
 1110
 1010
 1011
 1001
 1000

 By examining these lists you can discern the pattern: to construct the list of words of
length n, you write down the list of words of length n – 1, putting a 0 to the left of each word, and
then you write down the list of words of length n – 1 backwards, putting a 1 to the left of each
word. In each list, only one bit changes in passing from one binary string to the next one. But a
recursive description is difficult to execute by hand when you can't see all the words in front of
you. A non-recursive description was in order.

 Look again at the list of length-4 binary strings in lexicographical order. All the words
with the same prefix are grouped together, and the bit immediately to the right of this prefix is
first 0 and then 1, so that it follows the sequence (0, 1). The leftmost bit that changes is the 0
immediately to the left of a suffix of 1s because 1 is the last member of the sequence of values
attained by each bit. Now in Gray's list, putting a 1 in front of a list reverses that list; so putting
an odd number of 1s in front of a list will reverse the sequence followed by each bit: if the prefix
has an odd number of 1s, then the next bit will follow the sequence (1, 0) whereas if the prefix
has an even number of 1s, then the next bit will follow the sequence (0, 1). Check out the lists
above to verify this assertion.

 Now suppose the whole word has an even number of 1s. If the rightmost bit is 0, it has an
even number of 1s to its left; so its sequence is (0, 1) and it is not at its last value. If the

 134
rightmost bit is 1, it has an odd number of 1s to its left; so its sequence is (1, 0) and it is not at its
last value. Either way, it's the rightmost bit that changes.

 Now suppose the whole word has an odd number of 1s. If the last bit is a 0, it has an odd
number of 1s to its left; so its sequence is (1, 0). It is at its last value; so it can't change. The
same holds true for any 0 in a suffix of 0s. If there is an odd number of 1s, there must be at least
one of them. The rightmost 1 has an even number of 1s to its left; so it's sequence is (0, 1). This
bit too is at its last value; so it too can't change. But the bit immediatetly to left of the rightmost 1
is the rightmost bit of a prefix with an even number of 1s; so its situation is the same as the
rightmost bit of a whole binary string with an even number of 1s: whether it is a 0 or a 1 it is not
at its last value; so it changes. And if there aren't any bits to the left of the rightmost 1; then the
string is 10…0, the last string on the list.

 Each time a bit is changed, the parity of the number of bits that are 1 changes too.
Starting with the string 00…00 and a Boolean variable Odd set to false, you execute the
following procedure:

if (Odd) then
 search the string from right to left until you get to a 1;
 if this 1 is the leftmost bit then quit generating;
 else change the bit immediately to the left of this 1; end if;
else
 change the rightmost bit;
end if;
change Odd to not(Odd).

 Following this procedure, I managed to find the right combination of positions of the
levers to open the sarcophagus in time to get to the time machine before it vanished, and I
eventually won the game.

 In honour of Frank Gray, any list of words that satisfies some closeness criterion for
adjacent words in a list is called a Gray code. Gray codes have been invented for many
combinatorial objects, including combinations, permutations, compositions of an integer,
partitions of a set, partitions of an integer and Dyck words. A survey of Gray codes can be found
in [C. D. Savage, "A survey of combinatorial Gray codes", SIAM Review , 39, No. 4, 1997 605-
629].

 Of course, Gray codes are useful for more than just playing computer games. If two
successive words representing a combinatorial object differ only slightly, then some of the
properties of that object can be updated quickly. For example, binary strings of length n
represent subsets of a set of n elements, and when one bit changes, the cardinality of the subset
changes by 1; so as you generate all the subsets, you can update the cardinality quickly.

 Another example of a property that can be updated quickly with the help of a Gray code is
the number of inversions of a permutation. An inversion of a permutation is a pair of elements
such that the bigger one is to the left of the smaller one. For example, the permutation 53241 has
8 inversions: 53, 52, 54, 51, 32, 31, 21 and 41. When you exchange two adjacent elements p(i)
and p(i+1) of a permutation, the number of inversions increases by 1 if p(i) < p(i+1) or decreases

 135
by 1 if p(i) > p(i+1); so if the set of permutations of {1, 2, … , n} is generated in an order such
that each permutation differs from its predecessor by a transposition of adjacent elements, the
number of inversions can be updated quickly.

 Among the Gray codes for permutations there is one that transposes adjacent elements. It
was discovered independently by Johson [S.M. Johnson, Generation of permutations by adjacent
transpositions, Mathematics of Computation 17 (1963), p. 282-285] and Trotter [H.F. Trotter,
Algorithm 115: Perm, Communications of the ACM 5 (1962), 434-435]; so it's called the
Johnson-Trotter Gray code. Here is a list of the 24 permutations of length 4 as they are generated
by this Gray code, with the number of inversions to the right of each permutation.

 Perm. #inversions

1234 0
1243 1
1423 2
4123 3
4132 4
1432 3
1342 2
1324 1
3124 2
3142 3
3412 4
4312 5
4321 6
3421 5
3241 4
3214 3
2314 2
2341 3
2431 4
4231 5
4213 4
2413 3
2143 2
2134 1

 Examining this list of words, you can see that the largest number (4) moves first from
right to left until it gets to its final position – at the left end of the word. Then the second largest
number (3) moves one spot from right to left, and then the largest number moves from left to
right until it gets to its final position - at the right end of the word - and then the second largest
number moves one spot from right to left again, and so on until the second largest number gets to
its final position, which is not at the left end of the word but just to the right of the largest number
– a number isn't allowed to swap with a bigger number. Now both the largest and the second
largest number are in their final positions; so the third largest number (2) moves one spot from
right to left and the two largest numbers change direction. This continues until it is the turn of
the smallest number 1 to move, which would turn the permutation into the first one again; so the
generation stops. I leave it to you to write a pseudocode for generating this Gray code.

 136
 There are several Gray codes for Dyck words. The descriptions of these Gray codes are
too complicated to be given here; I'll just describe the properties of three of them and give
references. In all of these Gray codes, one Dyck word is transformed into its successor by
changing a single 1 to a 0 and a single 0 to a 1. In the first of these to be published [Ruskey, F.,
Proskurowski, A.: Generating Binary Trees by Transpositions. J. Algorithms 11 (1990) 68-84],
there could be an arbitrary number of bits including some 1s between the 1 and the 0 that change.
In the next one [Bultena, B., Ruskey, F.: An Eades-McKay Algorithm for Well-Formed
Parentheses Strings. Inform. Process. Lett. 68 (1998), no. 5, 255-259] there could be an arbitrary
number of bits between the 1 and the 0 that change, but each of these bits must be 0. And in the
third one [V. Vajnovszki and T.R. Walsh, A loopless two-close Gray-code algorithm for listing
k-ary Dyck words, Journal of Discrete Algorithms, Vol. 4, No. 4 (2006) 633-648] there can be at
most one bit between the 1 and the 0 that change and that bit must be 0.

 Notice the word "loopless" in the title of that last reference. That means that each word is
transformed into its successor in O(1) time even in the worst case. This term and the method for
designing such an algorithm was invented by Gideon Ehrlich [G. Ehrlich, Loopless algorithms
for generating permutations, combinations, and other combinatorial configurations, J. ACM 20
(1973), p. 500-513]. Other researchers then jumped on the bandwagon to design loopless
algorithms for other sets of combinatorial algorithms, including some colleagues of Ehrlich
[James R. Bitner, Gideon Ehrlich, Edward M. Reingold: Efficient Generation of the Binary
Reflected Gray Code and Its Applications. Commun. ACM 19(9): 517-521 (1976)], Stanley Gill
Williamson [S.G. Williamson, Combinatorics for computer science, Computer Science Press,
Rockville, 1985] and, of course, me. I did it for the Ruskey-Proskurowski Gray code [T.R.
Walsh, Generation of well-formed parenthesis strings in constant worst-case time, The Journal of
Algorithms 29, 1998, 165-173] and the one discovered by Vincent Vajnovski (see the reference
above with his name and mine). Professor Vajnovski invited me to come to Besançon to work
with him, which I was only too glad to do. After our work was done, I still had some time before
having to use my return ticket from Paris to Montreal; so I was able to spend a few days and
nights in Paris, sightseeing during the day and taking in Paris' night life each evening – by
attending a concert of classical music. Since my trip was subsidized by both my research grant
and Prof. Vajnovski's university, this was another use I managed to make of Gray codes.

 I also discovered a couple of Gray codes of my own. In one case, Ehrich's original
method worked [T.R. Walsh, Gray codes for involutions, The Journal of Combinatorial
Mathematics and Combinatorial Computing 36, 2001, 95-118]; in the other I had to modify it to
make it work [T.R. Walsh, Loop-free sequencing of bounded integer compositions, The Journal
of Combinatorial Mathematics and Combinatorial Computing 33, 2000, 323-345]. This latter
article illustrates yet another use I made of Gray codes. While working on my M. Sc. I got
interested in finding f(n,r), the number of length-n permutations with r inversions. There was
already a recursive definition of f(n,r), but I wanted to find a non-recursive formula. The one I
finally found was so complicated that it was less efficient than the recurrence; so the article I
submitted was condemned, derided and dismissed by both referees. But I was determined to
claim authorship of this result, and 35 years later I finally got the chance. I applied a special case
of my Gray code for bounded integer compositions to design a Gray code for permutations with a
given number of inversions. Having thus introduced the subject, I slipped my monstrous formula
into my article, and fortunately the referees did not insist that I remove it. And so it was that I
used Gray codes to claim authorship of an unpublishable discovery.

 137

CHAPTER 11. NP-COMPLETE PROBLEMS

 Unlike the previous chapters, this last chapter is not intended to be self-contained. That
would make it too long for its purpose, which is to amuse you with an article I published in The
Mathematical Intelligencer. Any notion not contained in this chapter can be found in the book
[Alfred V. Aho, J.E. Hopcroft, Jeffrey D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley Series in Computer Science and Information Processing (1974)],
referred to henceforth as AHU. Here I intend to give you enough of the flavour of the subject
that you will be able to appreciate the article.

 The sort of problems we will be dealing with here are called decision problems –
problems to which the solution is either the answer "yes" or the answer "no". An example of
such a problem is the knapsack problem. Given an array of k integers (m1,m2,...,mk) and another
integer S, is there a subarray of these integers whose sum is S? Suppose that the array is
(1,3,6,10). If S = 10, then the answer to that instance of the problem is "yes"; if S = 8, then the
answer to this instance of the problem is "no".

The P in NP-COMPLETE (the P in NP, not the P in COMPLETE) stands for polynomial.
Here we will not be concerned with whether an algorithm runs in O(n2) or O(n3) time. All we
want to know is whether the time in which it runs is bounded by some polynomial P(n). A
problem is said to be in the class P if there is a polynomial P and an algorithm that, for any
instance of the problem, correctly decides whether the answer to this instance of the problem is
yes or no in a time bounded by P(n), where n is the size of an efficient representation of this
instance of the problem.

Why was it necessary to add the condition that the representation has to be efficient?

There is an obvious algorithm for solving the knapsack problem that runs in O((n + k)2), where n
is the sum of the absolute values of all the k integers. Take an array A[-n..n] of Boolean and
initialize it to 0 everywhere except that A[0] = 1. Then execute the following algorithm:

for i←1 to k do
 for j←max(-n,-n-mi) to min(n,n-mi) do
 if A[i] = 1 then A[i+mi]←1 end if;
 end for j;
end for i.

 This algorithm will put a 1 in each A[i] such that there is some sub-array of integers
whose sum is i. We trace this algorithm for the array (1,3,6,10). Since all the integers in this
array are positive, we can make the array A start at 0 instead of –20.

 j= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A[j]1 0
i=1:1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i=2:1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i=3:1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
i=4:1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1

 138
 The number of operations is bounded by k times the array length, which is 2n+1, and
k(2n+1) ≤ (n + k)2 if k ≥ 1. Then for any S, if –n ≤ S ≤ n and A[S] = 1, then the answer to that
instance of the problem is "yes"; otherwise the answer is "no".

 Now you can always represent an instance of the problem so inefficiently that (n + k)2
will be bounded by a polynomial in the size of the representation. You represent the integer mi
by a string of |mi | 1s, preceded by a minus sign if mi < 0, and followed by a comma. The total
length will then be at least n + k, so that the time taken to solve the problem is bounded by the
square of the input size.

 But if an integer mi ≠ 0 is represented in binary or decimal, then the number of digits
needed to represent mi is not mi but rather proportional to log(|mi |), where the constant of
proportionality depends upon whether you're using binary or decimal or some other base. There
is no known algorithm for solving the knapsack problem in a time bounded by any polynomial in
the size of this more efficient representation of the problem; so blowing up the input size to make
the problem solvable in a time bounded by a polynomial in that over-inflated input size is
cheating, and it is to prevent this sort of cheating that the condition "efficient" is introduced.

 The N in NP-COMPLETE stands for non-deterministic. A non-deterministic algorithm is
allowed to make guesses. In the knapsack problem, suppose that the array M of integers is
(1,3,6,10) and S = 10. A non-deterministic algorithm could run through the array M and, for each
integer mi in M, guess whether to include or exclude mi , add up all the integers it includes and
say "yes" to the input if the sum of all the included integers is equal to S. If it decides to include
1, 3 and 6 and exclude 10, or to exclude 1, 3 and 6 and include 10, then the sum of the included
integers will be equal to S and the algorithm will say "yes". Such an algorithm runs in
polynomial time in the size of the input because all the algorithm has to do is to run through the
array M, include or exclude each of the elements mi of M and add up the integers it includes.
There other sequence of guesses for which the sum of the included integers will not be equal to S
and the algorithm will not say "yes", but the algorithm is said to accept the input if there exists a
sequence of lucky guesses that allows the algorithm to say "yes" to the input. If S is 8 instead of
10, then the algorithm cannot say "yes" no matter what sequence of guesses it makes. A problem
is said to be in the class NP if there is a non-deterministic algorithm that accepts any "yes"
instance of the problem in a time bounded by a polynomial in an efficient input size and doesn't
accept any "no" instance. Such an algorithm is not required to say "no" to a "no" instance in
polynomial time. To say "no" to a "no" instance of the knapsack problem, the algorithm would
have to try all the 2k possible sequences of guesses and this cannot be done in polynomial time.
But because there is a non-determininistic algorithm that accepts a "yes" instance of the knapsack
problem in polynomial time, albeit through a sequence of lucky guesses, and accepts no "no"
instances, the knapsack problem is in the class NP.

 Another example of a problem in the class NP is the partition problem. Given an array of
integers, can this array be partitioned into two sub-arrays such that the sum of the integers in one
sub-array is equal to the sum of the integers in the other sub-array? A non-deterministic
algorithm would run through the array and, for each element, guess whether to put it into the first
sub-array or the second one, add the elements in each sub-array and say yes to the input if the
sum of the elements in the first sub-array is equal to the sum of the elements in the second one.

 139
For example, suppose the array was (1,2,3,4). A good sequence of guesses would be to put 1 and
4 in one sub-array and 2 and 3 in the other one.

 Another example is the exact cover problem. Given a set S and a family F of subsets of S,
is there a sub-family of F such that the members of the sub-family are pairwise disjoint and their
union is equal to S? A non-deterministic algorithm would run through F and, for each member of
F, guess whether to include it in the sub-family or exclude it. Then the algorithm would check
whether the members of the sub-family are pairwise disjoint and whether their union is equal to S
and, if so, say yes to the input. For example, suppose that S={1,2,3,4} and F consists of the
subsets {1}, {1,2}, {2,3}, {2,4} and {4}. A good sequence of guesses would be to include {1},
{2,3} and {4} in the sub-family and exclude {1,2} and {2,4}.

 Another example of wide interest is the graph colouring problem. Given a simple
undirected graph G and a positive integer k, is it possible to colour the vertices of G using at most
k colours so that no two adjacent vertices get the same colour? A non-deterministic algorithm
would guess one of the k colours for each vertex and then check whether any two adjacent
vertices got the same colour and say yes to the input if not. For example, if the graph were the
one drawn below and k = 4, then a good sequence of guesses would be to colour vertices 1 and 3
red, vertices 2 and 4 blue, vertex 5 yellow and vertex 6 green.

 5

4 1
 6

 3 2

 Another example is the satisfiability problem. A Boolean expression consists of variable
names, conjunction symbols, disjunction symbols, negation symbols, and enough parentheses to
make it clear the order in which the operations are to be applied. An example of a Boolean
expression is (p∧¬q∧ r)∨(p∧q∧ r). A Boolean expression is said to be satisfiable if there is
an attribution of truth values (true or false) to each of the variables that gives the expression the
value true. Given a Boolean expression, is it satisfiable? A non-deterministic algorithm would
guess a truth value for each of the (distinct) variables, evaluate the Boolean expression and say
"yes" to the input if the Boolean expression turns out to be true. For the above Boolean
expression, a good sequence of guesses would be to make p true, q false and r true.

 A special case of the satisfiablility problem is the CNF-satisfiability problem. A Boolean
expression is said to be in conjunctive normal form if it consists of the conjunction of Boolean
expressions called clauses, each of which is the disjunction of variables, each of which may or
may not be preceded by a negation sign. The above Boolean expression is not in conjunctive
normal form, but (p∨¬q∨ r ∨ s)∧(p∨q∨ r ∨¬s) is. Given a Boolean expression in conjunctive
normal form, is it satisfiable? A non-deterministic algorithm would proceed as it would for an
arbitrary Boolean expression.

 140
 A special case of the CNF-satisfiability is 3-SAT. Given a Boolean expression in
conjunctive normal form in which each of the clauses has exactly three variables, is it satisfiable?
The expression (p∨¬q∨ r ∨ s)∧(p∨q∨ r ∨¬s) is not an instance of 3-SAT, but the expression
(p∨¬ q∨ r)∧(p∨q∨ r)∧(q∨ r ∨ s)∧(¬ q∨ r ∨¬s) is. A non-deterministic algorithm would
proceed as it would for an arbitrary Boolean expression.

 It is not surprising that all these problems are in the class NP. What is perhaps more
surprising is that none of these problems has been proved to be, or not to be, in the class P. Even
more surprising is that either all of them are in the class P or none of them are!

 Suppose you're interested in a problem D and you want to find a polynomial-time
algorithm to decide whether or not a given instance D, coded efficiently by a string x of n
symbols, is a "yes" instance or a "no" instance. If you know of a problem E that is in class P, you
may be able use problem E to find the desired algorithm. The trick is to transform each input x of
D into an input f(x) of E such that f(x) represents a "yes" instance of E if and only if x represents a
"yes" instance of D. Suppose you can do the transformation in a time bounded by a polynomial
p(n). Then f(x) can't be any longer than p(n) symbols because it takes a transformation step just
to write a symbol of f(x). Since E is in class P, there is an algorithm A that decides whether f(x)
represents a "yes" instance or a "no" instance of E in a time bounded by some polynomial q(p(n)).
You transform x into f(x) in time p(n), and then you apply the algorithm A that decides in a time
bounded by q(p(n)) whether f(x) represents a "yes" instance or a "no" instance of E. If A says
"yes" to f(x), then you say "yes" to x; if A says "no" to f(x), then you say "no" to x. You now have
an algorithm that decides whether x represents a "yes" instance or a "no" instance of D in a time
bounded by p(n) + q(p(n)), which is a polynomial in n; so D is in class P.

 A polynomial transformation of a problem D into a problem E transforms each "yes"
instance of D into a "yes" instance of E and each "no" instance of D into a "no" instance of
E in a time bounded by some polynomial of the length of the input that represents the
instance of D.

 As an example, here is a polynomial transformation of the knapsack problem into the
partition problem. Recall that the knapsack problem asks whether there is a sub-array of the
array M = (m1,m2,...,mk) whose sum is equal to a given integer S. To transform this problem into
the partition problem, add another element to the array: mk+1 = 2S − (m1 +m2 + ...+mk). This
transformation can be done in polynomial time because two integers can be added in a number of
operations bounded by the number of digits of the bigger one. The sum of all the integers in the
extended array M* = (m1,m2,...,mk ,mk+1) is equal to 2S. Suppose there is a sub-array of M the
sum of whose members is S. This sub-array is also a sub-array of M*, and the sum of the other
members of M* is also equal to S; so M* has been partitioned into two sub-arrays of equal sum.
Conversely, suppose that there is a partition of (m1,m2,...,mk ,mk+1) into two sub-arrays of equal
sum, which must be S because the sum of all the elements of M* is 2S. Then mk+1 has to belong
to exactly one of the two sub-arrays. The other sub-array is a sub-array of M and the sum of its
elements is equal to S. To give a more concrete example, the instance (1,3,6,10) with S = 16 of
the knapsack problem gets transformed into the instance (1,3,6,10,12) of the partition problem.
The sub-array (6,10), whose elements add to 16, induces the partition of (1,3,6,10,12) into the
sub-arrays (6,10) and (1,3,12) of equal sum 16.

 141
 As a harder example, here is a polynomial transformation of the exact cover problem into
the knapsack problem. Let E be the finite set {e1,e2,...,en} and let F be some family of k subsets
of E. The exact cover problem asks whether there is a subfamily of F whose members are
pairwise disjoint and whose union is equal to E. The trick here is to express each subset of E as a
non-negative integer in base k+1. Transform e1 into 1, e2 into (k+1), … , ei into (k+1)i−1, …
and en into (k+1)n−1. Then transform each subset S of E into the sum of the images of the
elements of S. For example, the empty set gets transformed into 0, the set {e1,e3,e4} gets
transformed into 1+(k+1)2+(k+1)3 and E itself gets transformed into
1+ (k+1)+ (k+1)2 + ...+ (k+1)n−1. Each member of F, which is a subset of E, gets transformed
into a non-negative integer, so that F, when its elements are ordered, gets transformed into an
array of k integers M=(m1,m2,...mk). Each sub-family f of F gets transformed into a sub-array of
M. For example, if f={{ e1, e2},{ e1, e2},{ e1, e3}}, then f is transformed into the array
(1+(k+1),1+(k+1), 1+(k+1)2), and the sum of the elements of this array is 3 + 2(k+1) + (k+1)2.
For each sub-family f of F, let s(f) be the sum of the images of the members of f. The coefficient
of (k+1)i−1 in s(f) is the number of occurrences of ei among all the members of f. Now the
members of a sub-family f are pairwise disjoint if and only if no element of E occurs more than
once among the members of f so that no coefficient of a power of k+1 in s(f) is greater than 1.
Also, the union of the members of f is equal to E if and only if every element of E occurs at least
once among the members of f so that no coefficient of a power of k+1 in s(f) is less than 1. It
follows that f is an exact cover of E if and only if every coefficient of a power of k + 1 in s(f) is
exactly 1. Since F has only k members, every sub-family f of F must have at most k members, so
that the coefficient of each power of k + 1 in s(f) must be at most k. It follows that the
coefficients of the powers of k + 1 are uniquely determined by the representation of s(f) in base
k + 1. For example, if k = 3, then 3 + 2(k+1) + (k+1)2 = 27 and 27 can be expressed in only one
way in base 4. It follows that the coefficient of every power of k + 1 in s(f) is exactly 1 if and
only if s(f) is equal to the integer 1+ (k+1)+ (k+1)2 + ...+ (k+1)n−1. This means that there is a
sub-family f of F whose members are pairwise disjoint and whose union is equal to E if and only
if there is a sub-array of (m1,m2,...mk), where mj is the image of the the jth element of F under
this transformation, whose elements add up to the integer 1+ (k+1)+ (k+1)2 + ...+ (k+1)n−1. This
transformation can be done in polynomial time; so it is a polynomial transformation of the exact
cover problem into the knapsack problem.

 Since there is a polynomial transformation of the exact cover problem into the knapsack
problem and a polynomial transformation of the knapsack problem into the partition problem,
there is a polynomial transformation of the exact cover problem into the partition problem. You
transform the exact cover problem into the knapsack problem, and the length of the input to the
knapsack problem will be bounded by a polynomial in the length of the input to the exact cover
problem. Then you transform the knapsack problem into the partition problem. The time taken
will be bounded by a polynomial in the length of the input to the knapsack problem, which, in
turn, is bounded by a polynomial in the length of the input to the exact cover problem; so the time
taken by the pair of transformations is bounded by a polynomial in the length of the input into the
exact cover problem. In general, if there is a polynomial transformation from problem A into
problem B and a polynomial transformation of problem B into problem C, then there is a
polynomial transformation from problem A into problem C.

 142
 In 1971 Stephen Cook published a proof that for any problem A in the class NP there is a
polynomial transformation from problem A into the CNF-satisfiability problem. His proof uses a
Turing machine, as does any satisfactory proof I've ever seen. Reproducing this proof here
would over-inflate the length of this monograph; if you're interested, you can find it in AHU. A
problem B is said to be NP-hard if for every problem A in the class NP there is a polynomial
transformation from problem A into problem B. If, in addition, problem B is in the class NP,
then it is said to be NP-complete. This is what the word COMPLETE means in the title of this
chapter. What Cook proved is that CNF-satisfiability is NP-complete.

 A polynomial transformation from CNF-satisfiability to 3-SAT appears in AHU. Since
there is a polynomial transformation from any problem in the class NP into CNF-satisfiability
and there is a polynomial transformation from CNF-satisfiability into 3-SAT, there is a
polynomial transformation from any problem in the class NP into 3-SAT; so 3-SAT is NP-hard,
and since it is in the class NP, it is NP-complete. In general, the way to prove that a problem D is
NP-hard is to find a polynomial transformation from a problem H, which has already been proved
to be NP-hard, into the problem D. In AHU there are polynomial transformations from 3-SAT
into the graph-colouring problem and from the graph-colouring problem into the exact cover
problem. In this monograph there are polynomial transformations from the exact cover problem
into the knapsack problem and from the knapsack problem into the partition problem (I take
credit for neither of these transformations – the latter one was found by a student taking a
graduate course from me). It follows that all these problems are NP-hard and, since they're all in
the class NP, they are all NP-complete.

 By now there are hundreds of problems that have been shown to be NP-complete. If any
of these problems, say problem E, were also in the class P, then any problem in the class NP, say
problem H, would also be in the class P, because there is a polynomial transformation from any
problem, including H, in the class NP into an NP-complete problem, including E, and by
combining this transformation with a polynomial-time algorithm that solves problem E you'd get
a polynomial-time algorithm that solves problem H. It follows that there are only two
possibilities: either all the NP-complete problems can be solved in polynomial time or none
of them can be. Now, among these hundreds of NP-complete problems are many on which
some very bright people have been working for a very long time, and none of them has found a
polynomial-time algorithm to solve their pet problem. If all of these problems had polynomial-
time algorithms, it would be rather unlikely that all of these brilliant researchers would have
missed them; so most people who work in the field think that none of the NP-complete problems
are in the class P. But an argument based on the intelligence of the researchers who have failed
to find polynomial-time algorithms for their favrourite problems is not a proof that no such
algorithm exists. This is the fundamental unsolved problem of theoretical computer science: is
P = NP or not? If you solve it, you will no doubt earn a Fields Medal. On the other hand, if you
attempt to solve it, you'd better do other research as well; otherwise you may end up having to
work beneath your qualifications like the mathematicians André, Gilbert and Pierre who ended
up as menial labourers in a booze factory.

 While teaching a course in algorithm analysis using AHU as a text, I thought of a story
that I could use to illustrate the polynomial transformations from CNF-satisfiability right through
to the partition problem. I submitted it to The Mathematical Intelligencer, and the editor-in-chief
Prof. Chandler Davis, an old friend of mine, accepted it (he suggested the title). Throughout this
monograph I have been trying to combat the contempt that some computer types have for

 143
mathematics. This story, on the other hand, makes fun of mathematicians who have contempt for
computer science.

Completely Non-Plussed

by Timothy Walsh

This story appeared in The Mathematical Intelligencer 9, #4 (1997), p77.

Once upon a time (in 1971), an Associate Professor of Mathematics went to his Chairman
(the only Full Professor in the Department) and demanded a promotion. The Chairman handed
him a book the size of a Toronto telephone directory, entitled "Conditions for Promotion to Full
Professor". Being an algebraist specializing in Boolean Algebras, the Associate Professor not
only wrote the Conditions as a Boolean expression but also put it into Conjunctive Normal Form.
He hoped to be able to determine which of the thousands of variables must be assigned the value
TRUE in order to satisfy the Conditions, or else to prove that no such assignment is possible. In
the latter case he could threaten to show up the Chairman as a fraud and then trade his silence for
the desired promotion. But he soon calculated that even a supercomputer would have to work
longer than the expected lifetime of the the universe to decide whether that expression is
satisfiable by trying all possible assignments of truth values to the variables; so he set out to find
a more efficient algorithm.

Now in those days mathematicians tended to scorn anything as dirty as Computer Science;

their idea of an efficient algorithm was one that ran faster on the computer (if indeed they knew
how to program) than the other algorithm they knew. In his case, the efficient algorithm first
transformed the Boolean expression into one in which each clause contains exactly three
variables. But even the efficient algorithm proved unequal to the task; so our Associate Professor
thought: "Well, perhaps if I transformed the problem into a simpler one ...". Day and night he
worked, neglecting both teaching and research, until he found a graph that has a proper colouring
in a certain number of colours if (and only if) his Boolean expression can be satisfied.

Our Associate Professor did not realize it, but he had just proved that 3-SAT and the graph-

colouring problem are NP-complete. But instead of using this result to further his case for
promotion, he rushed out of his office and down the hall to the office of an Assistant Professor, a
graph theorist.

"I have an interesting problem for you," panted the Associate Professor, unrolling the

wallpaper on which he had drawn his graph. "Can this graph be coloured in 3124 colours? I
know you're coming up for tenure soon, and I'm on the Tenure Committee. Solve this problem
for me, and I'll see to it that you get in."

The Assistant Professor tried the two graph-colouring algorithms he knew and found them

both wanting; so he too decided to transform his problem into a simpler one. Several student
complaints later, he came up with a set and a family of subsets such that some pairwise-disjoint
subfamily can cover the original set if and only if the graph has the desired colouring. But
instead of backing up his tenure application with his NP-completeness proof of the exact cover
problem, he promised his graduate student, a set theorist, an M.Sc. for covering his set.

 144

The graduate student didn't know how to program a computer, but he had learned from

masters how to tackle problems he couldn't solve himself: transform them and give them to
someone lower on the hierarchy than you, a procedure made possible by his position as an
Instructor. While stacks of assignments lay unmarked on his desk, he laboured mightily until he
found a sequence of integers that has a subsequence adding up to a certain number if and only if
his set has an exact cover. But instead of writing up his proof of the NP-completeness of the
knapsack problem as an M. Sc. thesis, he presented his problem to his class, promising a mark of
100% in the course to the first student to solve it.

The brightest student in his class took up the challenge. Instead of studying for his exams,

he transformed the sequence into another one that can be partitioned into two equal-sum
subsequences if the original sequence has the required subsequence, and gave his new sequence
to his girlfriend, promising her just about anything if she would write a program to partition it.
After all, he reasoned, his girlfriend is a Computer Science student, and what are Computer
Science students good for besides writing programs?

"Where did you get these numbers?" she asked. His male ego swelling, he showed her the

numbers he had been given and the transformation he had discovered. "And who gave you those
numbers?" she asked. On being told the name of his Instructor, she said, "Well, I'll get to work
on it. See you around!"

Following the leads, she went from Instructor to Assistant Professor to Associate Professor,
coaxing a transformation out of each of them and tracing the partition problem all the way back
to CNF-satisfiability. Since she attended Computer Science seminars, she knew that the CNF-
satisfiability problem had just been proved to be NP-complete, so that the transformations she
had been given constituted NP-completeness proofs of the 3-SAT, graph-colouring, exact cover,
knapsack and partition problems. As soon as her final exams were over, she wrote up these
proofs in a paper, thanking all four mathematicians "for their invaluable assistance". She was
confident that they wouldn't dare challenge the originality of her results even if they did happen
to find out about them from someone who reads Computer Science literature lest they admit
having missed the significance of the transformations they had unwittingly given her. And upon
entering Graduate School the following year she presented her results as an M. Sc. thesis, thus
achieving the distinction of being the first student in the history of that Computer Science
Department to obtain an M. Sc. before running out of funds.

